Abstract

Variable stiffness end-of-arm actuators can add dynamic manipulation capabilities to stiff manipulators and simultaneously enhance safety. The presence of an elastic element in these actuators can be used for absorbing impact energy; or storing energy and utilizing it for performing explosive tasks. The major challenge with variable stiffness actuators is to control their position and stiffness simultaneously to achieve optimal task performance. In this paper, we present an end-of-arm variable stiffness mechanism (VSM) for performing dynamic tasks. We formulate the task as an optimal control problem and numerically solve for the task-specific stiffness profile. We demonstrate the usability of the optimization problem in exploiting the dynamics of the VSM during an explosive hammering task and demonstrate that the time-varying stiffness profile can store energy and leads to improved task performance. As a result, the hammer attains twice as much velocity with variable stiffness compared to fixed stiffness. The hammering performance is further improved by optimizing task completion time and hammer velocity. Moreover, we demonstrate that the VSM stiffness plays a crucial role in minimizing the impact forces transferred to the robot. This paper presents the optimal trajectory and stiffness profile achieved through numerical optimization and then evaluates the proposed mechanism using experiments.

References

1.
Vanderborght
,
B.
,
Albu-Schäffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M.
, et al.,
2013
, “
Variable Impedance Actuators: A Review
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
2.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Höppner
,
H.
,
Burdet
,
E.
, et al.,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE/ASME Trans. Mechatron.
,
21
(
5
), pp.
2418
2430
.
3.
Haddadin
,
S.
,
De Luca
,
A.
, and
Albu-Schäffer
,
A.
,
2017
, “
Robot Collisions: A Survey on Detection, Isolation, and Identification
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1292
1312
.
4.
Park
,
K. M.
,
Kim
,
J.
,
Park
,
J.
, and
Park
,
F. C.
,
2021
, “
Learning-Based Real-Time Detection of Robot Collisions Without Joint Torque Sensors
,”
IEEE Rob. Autom. Lett.
,
6
(
1
), pp.
103
110
.
5.
Rice
,
J. J.
, and
Schimmels
,
J. M.
,
2018
, “
Passive Compliance Control of Redundant Serial Manipulators
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
044507
.
6.
Cardona
,
G. A.
,
Moreno
,
W.
,
Weitzenfeld
,
A.
, and
Calderon
,
J. M.
,
2016
, “
Reduction of Impact Force in Falling Robots Using Variable Stiffness
,”
SoutheastCon
,
Norfolk, VA
,
Mar. 30–Apr. 3
, IEEE, pp.
1
6
.
7.
Liu
,
Y.
,
Liu
,
X.
,
Yuan
,
Z.
, and
Liu
,
J.
,
2019
, “
Design and Analysis of Spring Parallel Variable Stiffness Actuator Based on Antagonistic Principle
,”
Mech. Mach. Theory
,
140
(
10
), pp.
44
58
.
8.
Vanderborght
,
B.
,
Tsagarakis
,
N. G.
,
Van Ham
,
R.
,
Thorson
,
I.
, and
Caldwell
,
D. G.
,
2011
, “
Maccepa 2.0: Compliant Actuator Used for Energy Efficient Hopping Robot Chobino1D
,”
Auton. Rob.
,
31
(
1
), p.
55
.
9.
Garabini
,
M.
,
Passaglia
,
A.
,
Belo
,
F.
,
Salaris
,
P.
, and
Bicchi
,
A.
,
2011
, “
Optimality Principles in Variable Stiffness Control: The VSA Hammer
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
3770
3775
.
10.
Memar
,
A. H.
, and
Esfahani
,
E. T.
,
2018
, “
A Variable Stiffness Gripper With Antagonistic Magnetic Springs for Enhancing Manipulation
,”
Proceedings of the Robotics: Science and Systems
,
Pittsburgh, PA
,
June 26–30
.
11.
Braun
,
D.
,
Howard
,
M.
, and
Vijayakumar
,
S.
,
2012
, “
Optimal Variable Stiffness Control: Formulation and Application to Explosive Movement Tasks
,”
Auton. Rob.
,
33
(
3
), pp.
237
253
.
12.
Garabini
,
M.
,
Passaglia
,
A.
,
Belo
,
F.
,
Salaris
,
P.
, and
Bicchi
,
A.
,
2012
, “
Optimality Principles in Stiffness Control: The VSA Kick
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
3341
3346
.
13.
Song
,
S.
,
She
,
Y.
,
Wang
,
J.
, and
Su
,
H.-J.
,
2020
, “
Toward Tradeoff Between Impact Force Reduction and Maximum Safe Speed: Dynamic Parameter Optimization of Variable Stiffness Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
054503
.
14.
Li
,
X.
,
Chen
,
W.
,
Lin
,
W.
, and
Low
,
K. H.
,
2017
, “
A Variable Stiffness Robotic Gripper Based on Structure-Controlled Principle
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1104
1113
.
15.
Memar
,
A. H.
, and
Esfahani
,
E. T.
,
2020
, “
A Robot Gripper With Variable Stiffness Actuation for Enhancing Collision Safety
,”
IEEE Trans. Ind. Electron.
,
67
(
8
), pp.
6607
6616
.
16.
Kim
,
B.
,
Kim
,
Y.
, and
Song
,
J.
,
2011
, “
Preliminary Experiments on Robotic Assembly Using a Hybrid-Type Variable Stiffness Actuator
,”
2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Budapest, Hungary
,
July 3–7
, pp.
1076
1080
.
17.
Zhang
,
M.
,
Fang
,
L.
,
Sun
,
F.
, and
Oka
,
K.
,
2019
, “
A Novel Wire-Driven Variable-Stiffness Joint Based on a Permanent Magnetic Mechanism
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051001
.
18.
Yu
,
J.
,
Zhao
,
Y.
,
Chen
,
G.
,
Gu
,
Y.
,
Wang
,
C.
, and
Huang
,
S.
,
2019
, “
Realizing Controllable Physical Interaction Based on an Electromagnetic Variable Stiffness Joint
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
054501
.
19.
Memar
,
A. H.
,
Mastronarde
,
N.
, and
Esfahani
,
E. T.
,
2017
, “
Design of a Novel Variable Stiffness Gripper Using Permanent Magnets
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
2818
2823
.
20.
Jujjavarapu
,
S. S.
,
Memar
,
A. H.
,
Karami
,
M. A.
, and
Esfahani
,
E. T.
,
2019
, “
Variable Stiffness Mechanism for Suppressing Unintended Forces in Physical Human–Robot Interaction
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020915
.
21.
Izumi
,
T.
, and
Hitaka
,
Y.
,
1997
, “
Hitting From Any Direction in 3-D Space by a Robot With a Flexible Link Hammer
,”
IEEE Trans. Rob. Autom.
,
13
(
2
), pp.
296
301
.
22.
Aiple
,
M.
,
Smisek
,
J.
, and
Schiele
,
A.
,
2019
, “
Increasing Impact by Mechanical Resonance for Teleoperated Hammering
,”
IEEE Trans. Haptics
,
12
(
2
), pp.
154
165
.
23.
Romanyuk
,
V.
,
Soleymanpour
,
S.
, and
Liu
,
G.
,
2019
, “
A Multiple Working Mode Approach to Hammering With a Modular Reconfigurable Robot
,”
2019 IEEE International Conference on Mechatronics and Automation (ICMA)
,
Tianjin, China
,
Aug. 4–7
, IEEE, pp.
774
779
.
24.
Imran
,
A.
, and
Yi
,
B.-J.
,
2018
, “
A Closed-Form Analytical Modeling of Internal Impulses With Application to Dynamic Machining Task: Biologically Inspired Dual-Arm Robotic Approach
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
442
449
.
25.
Hart
,
W. E.
,
Watson
,
J.-P.
, and
Woodruff
,
D. L.
,
2011
, “
Pyomo: Modeling and Solving Mathematical Programs in Python
,”
Math. Program. Comput.
,
3
(
3
), pp.
219
260
.
26.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.
You do not currently have access to this content.