Abstract

Flexure hinges are joints typically used in the design and manufacturing of compliant mechanisms, especially when small dimensions do not allow for conventional mechanical devices. In this paper, a closed-form solution is proposed for a nonlinear stiffness model used to describe the static displacements obtained on a flexure hinge of elementary geometry as a function of applied loads. A comparison with the most widely used linear model demonstrates the effectiveness of the proposed nonlinear approach, highlighting the advantages of its use in its scope of application. The obtained results are verified by finite element (FE) simulations, taken as a reference of the actual behavior assumed for the joints studied.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
, 1st ed.,
John Wiley & Sons
,
Canada
.
2.
Kota
,
S.
,
Joo
,
J.
,
Li
,
Z.
,
Rodgers
,
S. M.
, and
Sniegowski
,
J.
,
2001
, “
Design of Compliant Mechanisms: Applications to MEMS
,”
Analog Integr. Circuits Signal Process.
,
29
(
1-2
), pp.
7
15
.
3.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design of a Flexure-Based Constant-Force xy Precision Positioning Stage
,”
Mech. Mach. Theory
,
108
, pp.
1
13
.
4.
Ghafarian
,
M.
,
Shirinzadeh
,
B.
,
Das
,
T. K.
,
Al-Jodah
,
A.
, and
Wei
,
W.
,
2018
, “
Design of a Novel Parallel Monolithic 6-Dof Compliant Micromanipulation Mechanism
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Auckland, New Zealand
,
July 9–12
, IEEE, pp.
997
1002
.
5.
Chen
,
N.
, and
Tian
,
C.
,
2021
, “
Design, Modeling and Testing of a 3-Dof Flexible Piezoelectric Thin Sheet Nanopositioner
,”
Sens. Actuators A
,
323
, p.
112660
.
6.
Wang
,
G.
,
Yan
,
Y.
,
Ma
,
J.
, and
Cui
,
J.
,
2019
, “
Design, Test and Control of a Compact Piezoelectric Scanner Based on a Compound Compliant Amplification Mechanism
,”
Mech. Mach. Theory
,
139
, pp.
460
475
.
7.
Wang
,
F.
,
Liang
,
C.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2014
, “
Design of a Piezoelectric-Actuated Microgripper With a Three-Stage Flexure-Based Amplification
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2205
2213
.
8.
Zubir
,
M. N. M.
, and
Shirinzadeh
,
B.
,
2009
, “
Development of a High Precision Flexure-Based Microgripper
,”
Precis. Eng.
,
33
(
4
), pp.
362
370
.
9.
Das
,
T. K.
,
Shirinzadeh
,
B.
,
Al-Jodah
,
A.
,
Ghafarian
,
M.
, and
Pinskier
,
J.
,
2021
, “
A Novel Compliant Piezoelectric Actuated Symmetric Microgripper for the Parasitic Motion Compensation
,”
Mech. Mach. Theory
,
155
, p.
104069
.
10.
Tseytlin
,
Y.
,
1972
, Elastic Kinematical Devices, Mashinostroenie, Leningrad (in Russian).
11.
Quinn
,
T.
,
1992
, “
The Beam Balance as an Instrument for Very Precise Weighing
,”
Meas. Sci. Technol.
,
3
(
2
), p.
141
.
12.
Li
,
C.
,
Wang
,
N.
,
Yue
,
F.
, and
Zhang
,
X.
,
2021
, “
Optimization of Translational Flexure Joints Using Corrugated Units Under Stress Constraints
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061006
.
13.
Lin
,
J.
,
Qi
,
C.
,
Gao
,
F.
,
Yue
,
Y.
,
Hu
,
Y.
, and
Wei
,
B.
,
2023
, “
Modeling and Verification for a Three-Degree-of-Freedom Flexure-Based Planar Parallel Micro Manipulator
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041006
.
14.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041006
.
15.
Howell
,
L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
.
16.
Howel
,
L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
17.
Eastman
,
F. S.
,
1937
, “
The Design of Flexure Pivots
,”
J. Aeronaut. Sci.
,
5
(
1
), pp.
16
21
.
18.
Smith
,
S. T.
,
Badami
,
V. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
,
1997
, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
.
19.
Paros
,
J.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
20.
Lobontiu
,
N.
, and
Paine
,
J. S.
,
2002
, “
Design of Circular Cross-Section Corner-Filleted Flexure Hinges for Three-Dimensional Compliant Mechanisms
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
479
484
.
21.
Wu
,
Y.
, and
Zhou
,
Z.
,
2002
, “
Design Calculations for Flexure Hinges
,”
Rev. Sci. Instrum.
,
73
(
8
), pp.
3101
3106
.
22.
Schotborgh
,
W. O.
,
Kokkeler
,
F. G.
,
Tragter
,
H.
, and
van Houten
,
F. J.
,
2005
, “
Dimensionless Design Graphs for Flexure Elements and a Comparison Between Three Flexure Elements
,”
Precis. Eng.
,
29
(
1
), pp.
41
47
.
23.
Yong
,
Y. K.
, and
Lu
,
T. -F.
,
2009
, “
Comparison of Circular Flexure Hinge Design Equations and the Derivation of Empirical Stiffness Formulations
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Singapore
,
July 14–17
, IEEE, pp.
510
515
.
24.
Zelenika
,
S.
,
Munteanu
,
M. G.
, and
De Bona
,
F.
,
2009
, “
Optimized Flexural Hinge Shapes for Microsystems and High-Precision Applications
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1826
1839
.
25.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
CRC Press
,
Boca Raton, FL
.
26.
Lobontiu
,
N.
,
Paine
,
J. S.
,
O’Malley
,
E.
, and
Samuelson
,
M.
,
2002
, “
Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Characterization Based on Compliance Closed-Form Equations
,”
Precis. Eng.
,
26
(
2
), pp.
183
192
.
27.
Lobontiu
,
N.
,
Paine
,
J. S.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2002
, “
Design of Symmetric Conic-Section Flexure Hinges Based on Closed-Form Compliance Equations
,”
Mech. Mach. Theory
,
37
(
5
), pp.
477
498
.
28.
Lobontiu
,
N.
,
Garcia
,
E.
, and
Canfield
,
S.
,
2003
, “
Torsional Stiffness of Several Variable Rectangular Cross-Section Flexure Hinges for Macro-Scale and MEMS Applications
,”
Smart Mater. Struct.
,
13
(
1
), p.
12
.
29.
Chen
,
G.
,
Shao
,
X.
, and
Huang
,
X.
,
2008
, “
A New Generalized Model for Elliptical Arc Flexure Hinges
,”
Rev. Sci. Instrum.
,
79
(
9
), p.
095103
.
30.
Chen
,
G.
,
Liu
,
X.
,
Gao
,
H.
, and
Jia
,
J.
,
2009
, “
A Generalized Model for Conic Flexure Hinges
,”
Rev. Sci. Instrum.
,
80
(
5
), p.
055106
.
31.
Linß
,
S.
,
Erbe
,
T.
, and
Zentner
,
L.
,
2011
, “
On Polynomial Flexure Hinges for Increased Deflection and an Approach for Simplified Manufacturing
,”
13th World Congress in Mechanism and Machine Science
,
Guanajuato, Mexico
,
June 19–23
, p. A11_512.
32.
Li
,
Q.
,
Pan
,
C.
, and
Xu
,
X.
,
2013
, “
Closed-Form Compliance Equations for Power-Function-Shaped Flexure Hinge Based on Unit-Load Method
,”
Precis. Eng.
,
37
(
1
), pp.
135
145
.
33.
Vallance
,
R. R.
,
Haghighian
,
B.
, and
Marsh
,
E. R.
,
2008
, “
A Unified Geometric Model for Designing Elastic Pivots
,”
Precis. Eng.
,
32
(
4
), pp.
278
288
.
34.
Yang
,
M.
,
Du
,
Z.
,
Dong
,
W.
, and
Sun
,
L.
,
2018
, “
Design and Modeling of a Variable Thickness Flexure Pivot
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
014502
.
35.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
36.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
37.
Midha
,
A.
, and
Kuber
,
R.
,
2014
, “
Closed-Form Elliptic Integral Solution of Initially-Straight and Initially-Curved Small-Length Flexural Pivots
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, Vol. 46360, American Society of Mechanical Engineers, p. V05AT08A044.
38.
Bisshopp
,
K.
, and
Drucker
,
D.
,
1945
, “
Large Deflection of Cantilever Beams
,”
Quart. Appl. Math.
,
3
(
3
), pp.
272
275
.
39.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2005
, “
Closed-Form Nonlinear Analysis of Beam-Based Flexure Modules
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, Vol. 47446, pp.
101
110
.
40.
Friedrich
,
R.
,
Lammering
,
R.
, and
Heurich
,
T.
,
2015
, “
Nonlinear Modeling of Compliant Mechanisms Incorporating Circular Flexure Hinges With Finite Beam Elements
,”
Precis. Eng.
,
42
, pp.
73
79
.
41.
Rad
,
F. P.
,
Vertechy
,
R.
,
Berselli
,
G.
, and
Parenti-Castelli
,
V.
,
2016
, “
Analytical Compliance Analysis and Finite Element Verification of Spherical Flexure Hinges for Spatial Compliant Mechanisms
,”
Mech. Mach. Theory
,
101
, pp.
168
180
.
42.
Li
,
L.
,
Zhang
,
D.
,
Qu
,
H.
, and
Wang
,
Y.
,
2022
, “
Generalized Model and Configuration Design of Multiple-Axis Flexure Hinges
,”
Mech. Mach. Theory
,
169
, p.
104677
.
43.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
.
44.
Moschini
,
S.
, and
Claudio Palpacelli
,
M.
,
2022
, “
Practical Range of Applicability of a Linear Stiffness Model of an Elliptical Flexure Hinge
,”
IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
,
Taipei, Taiwan
,
Nov. 28–30
, pp.
1
6
.
45.
Moschini
,
S.
, and
Palpacelli
,
M.
,
2023
, “
Insights Into Bending Stiffness Modeling of Elementary Flexure Hinges
,”
Appl. Sci.
,
13
(
17
), p.
9785
.
46.
Villaggio
,
P.
,
1997
,
Mathematical Models for Elastic Structures
,
Cambridge University Press
,
Cambridge, MA
.
You do not currently have access to this content.