Abstract

This paper presents a theoretical study on the ability of multirotor aerial vehicles (MRAVs) with tiltable propellers to achieve and sustain static hovering at different orientations. To analyze the ability of MRAVs with tiltable propellers to achieve static hovering, a novel linear map between the platform’s control inputs and applied forces and moments is introduced. The relation between the introduced map and the platform’s ability to hover at different orientations is developed. Correspondingly, the conditions for MRAVs with tiltable propellers to realize and sustain static hovering are detailed. A numerical metric is then introduced, which reflects the ability of MRAVs to sustain static hovering at different orientations. A subclass of MRAVs with tiltable propellers is defined as the critically statically hoverable platforms (CSH), where CSH platforms are MRAVs that cannot sustain static hovering with fixed propellers, but can achieve static hovering with tilting propellers. Finally, extensive simulations are conducted to test and validate the above findings, and to demonstrate the effect of the proposed numerical metric on the platform’s dynamics.

References

1.
Pounds
,
P.
,
Mahony
,
R.
,
Hynes
,
P.
, and
Roberts
,
J. M.
,
2002
, “
Design of a Four-Rotor Aerial Robot
,”
Proceedings of the 2002 Australasian Conference on Robotics and Automation (ACRA 2002)
,
Auckland, New Zealand
,
Nov. 27–29
, pp.
145
150
.
2.
Rashad
,
R.
,
Goerres
,
J.
,
Aarts
,
R.
,
Engelen
,
J. B.
, and
Stramigioli
,
S.
,
2020
, “
Fully Actuated Multirotor UAVS: A Literature Review
,”
IEEE Rob. Automat. Mag.
,
27
(
3
), pp.
97
107
.
3.
Brescianini
,
D.
, and
D’Andrea
,
R.
,
2016
, “
Design, Modeling and Control of an Omni-Directional Aerial Vehicle
,”
Proceedings of the 2016 IEEE International Conference on Robotics and Automation
,
Stockholm, Sweden
,
May 16–21
, pp.
3261
3266
.
4.
Hamandi
,
M.
,
Sawant
,
K.
,
Tognon
,
M.
, and
Franchi
,
A.
,
2020
, “
Omni-Plus-Seven (O7+): An Omnidirectional Aerial Prototype With a Minimal Number of Unidirectional Thrusters
,”
2020 International Conference on Unmanned Aircraft Systems (ICUAS)
,
Athens, Greece
,
Sept. 1–4
, pp.
754
761
.
5.
Ducard
,
G. J.
, and
Allenspach
,
M.
,
2021
, “
Review of Designs and Flight Control Techniques of Hybrid and Convertible VTOL UAVS
,”
Aerosp. Sci. Technol.
,
118
, p.
107035
.
6.
Ollero
,
A.
,
Tognon
,
M.
,
Suarez
,
A.
,
Lee
,
D.
, and
Franchi
,
A.
,
2022
, “
Past, Present, and Future of Aerial Robotic Manipulators
,”
IEEE Trans. Rob.
,
38
(
1
), pp.
626
645
.
7.
Mohiuddin
,
A.
,
Zweiri
,
Y.
,
Almadhoun
,
R.
,
Taha
,
T.
, and
Gan
,
D.
,
2020
, “
Energy Distribution in Dual-UAV Collaborative Transportation Through Load Sharing
,”
ASME J. Mech. Rob.
, pp.
1
14
.
8.
Allenspach
,
M.
,
Vyas
,
Y.
,
Rubio
,
M.
,
Siegwart
,
R.
, and
Tognon
,
M.
,
2022
, “
Human-State-Aware Controller for a Tethered Aerial Robot Guiding a Human by Physical Interaction
,”
IEEE Rob. Automat. Lett.
,
7
(
2
), pp.
2827
2834
.
9.
Hamandi
,
M.
,
Usai
,
F.
,
Sablé
,
Q.
,
Staub
,
N.
,
Tognon
,
M.
, and
Franchi
,
A.
,
2021
, “
Design of Multirotor Aerial Vehicles: A Taxonomy Based on Input Allocation
,”
Int. J. Rob. Res.
,
40
(
8–9
), pp.
1015
1044
.
10.
Bin Junaid
,
A.
,
Diaz De Cerio Sanchez
,
A.
,
Betancor Bosch
,
J.
,
Vitzilaios
,
N.
, and
Zweiri
,
Y.
,
2018
, “
Design and Implementation of a Dual-Axis Tilting Quadcopter
,”
Robotics
,
7
(
4
), p.
65
.
11.
Cardoso
,
D.
,
Raffo
,
G.
, and
Esteban
,
S.
,
2016
, “
A Robust Adaptive Mixing Control for Improved Forward Flight of a Tilt-Rotor UAV
,”
2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)
,
Orlando, FL
,
Oct. 30–Nov. 2
, pp.
1432
1437
.
12.
Papachristos
,
C.
,
Alexis
,
K.
, and
Tzes
,
A.
,
2016
, “
Dual-Authority Thrust-Vectoring of a Tri-Tiltrotor Employing Model Predictive Control
,”
J. Intel. Rob. Syst.
,
81
(
3–4
), p.
471
.
13.
Al-Ali
,
I.
,
Zweiri
,
Y.
,
AMoosa
,
N.
,
Taha
,
T.
,
Dias
,
J.
, and
Senevirtane
,
L.
,
2020
, “
State of the Art in Tilt-Quadrotors, Modelling, Control and Fault Recovery
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
2
), pp.
474
486
.
14.
Kamel
,
M.
,
Verling
,
S.
,
Elkhatib
,
O.
,
Sprecher
,
C.
,
Wulkop
,
P.
,
Taylor
,
Z.
,
Siegwart
,
R.
, and
Gilitschenski
,
I.
,
2018
, “
The Voliro Omniorientational Hexacopter: An Agile and Maneuverable Tiltable-Rotor Aerial Vehicle
,”
IEEE Rob. Automat. Mag.
,
25
(
4
), pp.
34
44
.
15.
Gress
,
G.
,
2002
, “
Using Dual Propellers as Gyroscopes for Tilt-Prop Hover Control
,”
2002 Biennial International Powered Lift Conference and Exhibit
,
Williamsburg, VA
,
Nov. 5–7
, p.
5968
.
16.
Ramp
,
M.
, and
Papadopoulos
,
E.
,
2015
, “
On Modeling and Control of a Holonomic Vectoring Tricopter
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
, pp.
662
668
.
17.
Ryll
,
M.
,
Bülthoff
,
H.
, and
Giordano
,
P.
,
2015
, “
A Novel Overactuated Quadrotor Unmanned Aerial Vehicle: Modeling, Control, and Experimental Validation
,”
IEEE Trans. Control Syst. Technol.
,
23
(
2
), pp.
540
556
.
18.
Michieletto
,
G.
,
Ryll
,
M.
, and
Franchi
,
A.
,
2018
, “
Fundamental Actuation Properties of Multi-Rotors: Force-Moment Decoupling and Fail-Safe Robustness
,”
IEEE Trans. Rob.
,
34
(
3
), pp.
702
715
.
19.
Baskaya
,
E.
,
Hamandi
,
M.
,
Bronz
,
M.
, and
Franchi
,
A.
,
2021
, “
A Novel Robust Hexarotor Capable of Static Hovering in Presence of Propeller Failure
,”
IEEE Rob. Automat. Lett.
,
6
(
2
), pp.
4001
4008
.
20.
Matsuda
,
R.
,
Ibuki
,
T.
, and
Sampei
,
M.
,
2018
, “
A Hoverability Analysis Method for Multirotor UAVS With a Case Study on Fault Tolerance
,”
2018 IEEE Conference on Decision and Control (CDC)
,
Miami, FL
,
Dec. 17–19
, pp.
4264
4269
.
21.
Mochida
,
S.
,
Matsuda
,
R.
,
Ibuki
,
T.
, and
Sampei
,
M.
,
2021
, “
A Geometric Method of Hoverability Analysis for Multirotor UAVS With Upward-Oriented Rotors
,”
IEEE Trans. Rob.
,
37
(
5
), pp.
1765
1779
.
22.
Allenspach
,
M.
,
Bodie
,
K.
,
Brunner
,
M.
,
Rinsoz
,
L.
,
Taylor
,
Z.
,
Kamel
,
M.
,
Siegwart
,
R.
, and
Nieto
,
J.
,
2020
, “
Design and Optimal Control of a Tiltrotor Micro-Aerial Vehicle for Efficient Omnidirectional Flight
,”
Int. J. Rob. Res.
,
39
(
10–11
), pp.
1305
1325
.
23.
Soto-Guerrero
,
D.
, and
Ramírez-Torres
,
J. G.
,
2018
, “
The Hexapodopter: A Hybrid Flying Hexapod—Holonomic Flying Analysis
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051008
.
24.
McArthur
,
D. R.
,
Chowdhury
,
A. B.
, and
Cappelleri
,
D. J.
,
2018
, “
Design of the Interacting-Boomcopter Unmanned Aerial Vehicle for Remote Sensor Mounting
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025001
.
25.
Hamandi
,
M.
,
Sable
,
Q.
,
Tognon
,
M.
, and
Franchi
,
A.
,
2021
, “
Understanding the Omnidirectional Capability of a Generic Multi-Rotor Aerial Vehicle
,”
2021 Aerial Robotic Systems Physically Interacting With the Environment (AIRPHARO)
,
Biograd na Moru, Croatia
,
Oct. 4–5
, pp.
1
6
.
26.
Bodie
,
K.
,
Taylor
,
Z.
,
Kamel
,
M.
, and
Siegwart
,
R.
,
2020
, “
Towards Efficient Full Pose Omnidirectionality With Overactuated MAVS
,”
Proceedings of the 2018 International Symposium on Experimental Robotics
,
Buenos Aires, Argentina
,
Nov. 5–8
, International Publishing, pp.
85
95
.
27.
Zhang
,
W.
,
Mueller
,
M. W.
, and
D’Andrea
,
R.
,
2016
, “
A Controllable Flying Vehicle With a Single Moving Part
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
3275
3281
.
28.
Salazar-Cruz
,
S.
, and
Lozano
,
R.
,
2005
, “
Stabilization and Nonlinear Control for a Novel Trirotor Mini-Aircraft
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, pp.
2612
2617
.
29.
Donadel
,
R.
,
Raffo
,
G.
, and
Becker
,
L.
,
2014
, “
Modeling and Control of a Tiltrotor UAV for Path Tracking
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
3839
3844
.
30.
Papachristos
,
C.
,
Alexis
,
K.
, and
Tzes
,
A.
,
2013
, “
Model Predictive Hovering-Translation Control of an Unmanned Tri-Tiltrotor
,”
Proceedings of the 2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
5425
5432
.
31.
Tognon
,
M.
, and
Franchi
,
A.
,
2018
, “
Omnidirectional Aerial Vehicles With Unidirectional Thrusters: Theory, Optimal Design, and Control
,”
IEEE Rob. Automat. Lett.
,
3
(
3
), pp.
2277
2282
.
You do not currently have access to this content.