Abstract

Force analysis with regard to serial connected manipulators is discussed thoroughly in the past. However, force analysis of statically balanced manipulator using springs has not been widely addressed because spring forces and motions do not share an immediate association. In this article, spring forces are represented as accumulative joint angles of links crossed by springs and attached angles/lengths of springs. Torque equilibrium equations regarding the preconnected joint of a typical link as contributed by gravity force and spring force can be inwardly formed link by link from the end link. Compatibility with the same accumulative joint angle can be formulated under static balance conditions. Hence, spring attachment parameters such as spring stiffness and attachment lengths are constrained by given link properties and spring attachment angles. Thus, spring forces can be determined by a chosen set of stiffness and attached lengths of springs, and the joint reaction force can then be determined. Example figures of 3-degrees-of-freedom (DOFs) manipulators show that joint reaction forces are reduced by 22.6%, 40.1%, and 75.7% at joints 1, 2, and 3, respectively, than those without springs. It is found that besides balancing gravity, the statically balanced manipulator is with lower joint reaction forces. Hence, the manipulator can be more lightweight by using compact joints and links with the same material. Furthermore, the static and dynamic performance of the manipulator can be improved by the effect of reduced joint reaction forces as well.

References

1.
Salisbury
,
J.
, and
Craig
,
J.
,
1982
, “
Articulated Hands: Kinematic and Force Control Issues
,”
Int. J. Robot. Res.
,
1
(
1
), pp.
4
17
.
2.
Orin
,
D. E.
,
McGhee
,
R. B.
,
Vukobratović
,
M.
, and
Hartoch
,
G.
,
1979
, “
Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods
,”
Math. Biosci.
,
43
(
1–2
), pp.
107
130
.
3.
Baker
,
D. R.
, and
Wampler
,
C. W.
,
1988
, “
On the Inverse Kinematics of Redundant Manipulators
,”
Int. J Robot. Res.
,
7
(
2
), pp.
3
21
.
4.
Aversa
,
R.
,
Petrescu
,
R. V. V.
,
Akash
,
B.
,
Bucinell
,
R. B.
,
Corchado
,
J. M.
,
Berto
,
F.
,
Mirsayar
,
M.
, et al
,
2017
, “
Kinematics and Forces to a New Model Forging Manipulator
,”
Am. J. Appl. Sci.
,
14
(
1
), pp.
60
80
.
5.
Suarez
,
A.
,
Jimenez-Cano
,
A. E.
,
Vega
,
V. M.
,
Heredia
,
G.
,
Rodriguez-Castaño
,
A.
, and
Ollero
,
A.
,
2018
, “
Design of a Lightweight Dual arm System for Aerial Manipulation
,”
Mechatronics
,
50
(
1
), pp.
30
44
.
6.
Hockstein
,
N. G.
,
Nolan
,
J. P.
,
O’Malley
,
B. W.
, and
Woo
,
Y. J.
,
2005
, “
Robotic Microlaryngeal Surgery: a Technical Feasibility Study Using the DaVinci Surgical Robot and an Airway Mannequin
,”
Laryngoscope
,
115
(
5
), pp.
780
785
.
7.
Wang
,
W.
,
Li
,
J.
,
Wang
,
S.
,
Su
,
H.
, and
Jiang
,
X.
,
2016
, “
System Design and Animal Experiment Study of a Novel Minimally Invasive Surgical Robot
,”
Int. J. Med. Robot. Comp.
,
12
(
1
), pp.
73
84
.
8.
Yamamoto
,
T.
,
Terada
,
K.
,
Ochiai
,
A.
,
Saito
,
F.
,
Asahara
,
Y.
, and
Murase
,
K.
,
2019
, “
Development of Human Support Robot as the Research Platform of a Domestic Mobile Manipulator
,”
Robomech. J.
,
6
(
1
), pp.
1
15
.
9.
Otten
,
A.
,
Voort
,
C.
,
Stienen
,
A.
,
Aarts
,
R.
,
van Asseldonk
,
E.
, and
van der Kooij
,
H.
,
2015
, “
LIMPACT: A Hydraulically Powered Self-Aligning Upper Limb Exoskeleton
,”
IEEE/ASME Trans. Mech.
,
20
(
5
), pp.
2285
2298
.
10.
Gopura
,
R.
,
Bandara
,
D. S. V.
,
Kiguchi
,
K.
, and
Mann
,
G. K. I.
,
2016
, “
Developments in Hardware Systems of Active Upper-Limb Exoskeleton Robots: A Review
,”
Robot. Auton. Syst.
,
75
(
1
), pp.
203
220
.
11.
Deepak
,
S. R.
, and
Ananthasuresh
,
G.
,
2009
, “
Static Balancing of Spring-Loaded Planar Revolute-Joint Linkages Without Auxiliary Links
,”
14th National Conference on Machines and Mechanisms
,
NIT, Durgapur, India
,
Dec. 17–18
.
12.
Tschiersky
,
M.
,
Hekman
,
E. E. G.
,
Herder
,
J. L.
,
Brouwer
,
D. M.
, and
Tschiersky
,
M.
,
2021
, “
Gravity Balancing Flexure Spring Mechanisms for Shoulder Support in Assistive Orthoses
,”
IEEE T. Med. Robot. Bio.
,
4
(
2
), pp.
448
459
.
13.
Barents
,
R.
,
Schenk
,
M.
,
van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2011
, “
Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061010
.
14.
Van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2007
, “
Gravity-Balanced Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Dev.
,
1
(
2
), pp.
151
158
.
15.
Deepak
,
S. R.
, and
Ananthasuresh
,
G.
,
2012
, “
Perfect Static Balance of Linkages by Addition of Springs but Not Auxiliary Bodies
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021014
.
16.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2009
, “
Design of Perfectly Statically Balanced One-DOF Planar Linkages With Revolute Joints Only
,”
ASME J. Mech. Des.
,
131
(
5
), p.
051004
.
17.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2011
, “
Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension
,”
IEEE T. Robot.
,
28
(
1
), pp.
12
21
.
18.
Lee
,
Y.-Y.
, and
Chen
,
D.-Z.
,
2014
, “
Determination of Spring Installation Configuration on Statically Balanced Planar Articulated Manipulators
,”
Mech. Mach. Theory
,
74
(
1
), pp.
319
336
.
19.
Huysamen
,
K.
,
Bosch
,
T.
,
de Looze
,
M.
,
Stadler
,
K. S.
,
Graf
,
E.
, and
O'Sullivan
,
L. W.
,
2018
, “
Evaluation of a Passive Exoskeleton for Static Upper Limb Activities
,”
Appl. Ergon.
,
70
(
1
), pp.
148
155
.
20.
Bortoletto
,
R.
,
Mello
,
A. N.
, and
Piovesan
,
D.
,
2017
, “
A Springs Actuated Finger Exoskeleton: From Mechanical Design to Spring Variables Evaluation
,”
2017 International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
.
21.
Grazi
,
L.
,
Trigili
,
E.
,
Proface
,
G.
,
Giovacchini
,
F.
,
Crea
,
S.
, and
Vitiello
,
N.
,
2020
, “
Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers With Motorized Tuning of Assistance
,”
IEEE T. Neur. Sys. Reh.
,
28
(
10
), pp.
2276
2285
.
22.
Zhou
,
L.
,
Chen
,
W.
,
Chen
,
W.
,
Bai
,
S.
,
Zhang
,
J.
, and
Wang
,
J.
,
2020
, “
Design of a Passive Lower Limb Exoskeleton for Walking Assistance With Gravity Compensation
,”
Mech. Mach. Theory
,
150
(
1
), p.
103840
.
23.
Eguchi
,
Y.
,
Kadone
,
H.
, and
Suzuki
,
K.
,
2018
, “
Standing Mobility Device With Passive Lower Limb Exoskeleton for Upright Locomotion
,”
IEEE/ASME T. Mech.
,
23
(
4
), pp.
1608
1618
.
24.
Hidayah
,
R.
,
Sui
,
D.
,
Wade
,
K. A.
,
Chang
,
B.-C.
, and
Agrawal
,
S.
,
2021
, “
Passive Knee Exoskeletons in Functional Tasks: Biomechanical Effects of a SpringExo Coil-Spring on Squats
,”
Wear Technol.
,
2
(
1
), p.
e7
.
25.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031014
.
26.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules
,”
Mech. Mach. Theory
,
154
(
1
), p.
104046
.
27.
Woo
,
J.
,
Seo
,
J.-T.
, and
Yi
,
B.-J.
,
2019
, “
A Static Balancing Method for Variable Payloads by Combination of a Counterweight and Spring and Its Application as a Surgical Platform
,”
Appl. Sci.
,
9
(
19
), p.
3955
.
28.
Martini
,
A.
,
Troncossi
,
M.
, and
Rivola
,
A.
,
2019
, “
Algorithm for the Static Balancing of Serial and Parallel Mechanisms Combining Counterweights and Springs: Generation, Assessment and Ranking of Effective Design Variants
,”
Mech. Mach. Theory
,
137
(
1
), pp.
336
354
.
29.
de Vries
,
A. W.
,
Krause
,
F.
, and
de Looze
,
M. P.
,
2021
, “
The Effectivity of a Passive Arm Support Exoskeleton in Reducing Muscle Activation and Perceived Exertion During Plastering Activities
,”
Ergonomics
,
64
(
6
), pp.
712
721
.
30.
Gosselin
,
C.
,
2008
, “Gravity Compensation, Static Balancing and Dynamic Balancing of Parallel Mechanisms,”
Smart Devices and Machines for Advanced Manufacturing
,
L.
Wang
, and
J.
Xi
, eds.,
Springer-Verlag Limited
,
London
, pp.
27
48
.
31.
Chiang
,
W.-H.
, and
Chen
,
D.-Z.
,
2017
, “
Design of Planar Variable-Payload Balanced Articulated Manipulators With Actuated Linear Ground-Adjacent Adjustment
,”
Mech. Mach. Theory
,
109
(
1
), pp.
296
312
.
32.
Nguyen
,
V. L.
,
Kuo
,
C.-H.
, and
Lin
,
P. T.
,
2022
, “
Reliability-Based Analysis and Optimization of the Gravity Balancing Performance of Spring-Articulated Serial Robots With Uncertainties
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031016
.
33.
Gu
,
Y.
,
Ren
,
G.
, and
Zhou
,
M.
,
2020
, “
A Fully Coupled Elastohydrodynamic Model for Static Performance Analysis of Gas Foil Bearings
,”
Tribol. Int.
,
147
(
1
), p.
106297
.
34.
Lee
,
D.-H.
,
Kim
,
Y.-C.
, and
Kim
,
K.-W.
,
2010
, “
The Effect of Coulomb Friction on the Static Performance of Foil Journal Bearings
,”
Tribol. Int.
,
43
(
5–6
), pp.
1065
1072
.
35.
Nguyen
,
D. C.
, and
Ahn
,
H. J.
,
2014
, “
Dynamic Analysis and Iterative Design of a Passive Reaction Force Compensation Device for a Linear Motor Motion Stage
,”
Int. J. of Precis. Eng. Man.
,
15
(
11
), pp.
2367
2373
.
36.
Seo
,
C.-H.
,
Jeon
,
Y. H.
,
Lee
,
H.-K.
,
Kim
,
H.-Y.
, and
Lee
,
M. G.
,
2018
, “
Reaction Force Compensator for High-Speed Precision Stage of Laser Direct Imaging Process
,”
Shock Vib.
,
2018
(
1
), p.
8324539
.
37.
Li
,
X.-F.
, and
Lee
,
K. Y.
,
2015
, “
Effect of Horizontal Reaction Force on the Deflection of Short Simply Supported Beams Under Transverse Loadings
,”
Int. J. Mech. Sci.
,
99
(
1
), pp.
121
129
.
38.
Cocuzza
,
S.
,
Pretto
,
I.
, and
Debei
,
S.
,
2011
, “
Novel Reaction Control Techniques for Redundant Space Manipulators: Theory and Simulated Microgravity Tests
,”
Acta Astronaut.
,
68
(
11–12
), pp.
1712
1721
.
39.
Li-Xin
,
X.
, and
Yong-Gang
,
L.
,
2014
, “
Investigation of Joint Clearance Effects on the Dynamic Performance of a Planar 2-DOF Pick-and-Place Parallel Manipulator
,”
Robot. Comput. Integr. Manuf.
,
30
(
1
), pp.
62
73
.
40.
De Luca
,
A.
,
Albu-Schaffer
,
A.
,
Haddadin
,
S.
, and
Hirzinger
,
G.
,
2006
, “
Collision Detection and Safe Reaction With the DLR-III Lightweight Manipulator Arm
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
.
41.
Juang
,
C.-W.
, and
Chen
,
D.-Z.
,
2022
, “
Spring Configurations and Attachment Angles Determination for Statically Balanced Planar Articulated Manipulators
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
054502
.
42.
Delissen
,
A. A.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design and Optimization of a General Planar Zero Free Length Spring
,”
Mech. Mach. Theory
,
117
(
1
), pp.
56
77
.
You do not currently have access to this content.