Abstract

Kinematic estimations and dynamic performance assessments are fundamental theoretical issues to realize the mechanism from conceptual design to engineering application. In this article, the closed-form dynamic formulations of a 4-degrees-of-freedom (DoFs) parallel driving mechanism are derived by combining the Lagrange method and the virtual work principle. The selection principle of generalized coordinates and the steps for inverse dynamics modeling of the manipulator are proposed. Simulation results verify the correctness of the dynamic model, and a physical prototype has been built. Based on the dynamic modeling, the concise algebraic expression of the operational space inertia matrix of the parallel driving mechanism is deduced. Because the translation and rotation degrees-of-freedom are inconsistent in the operational space, the Jacobian matrix is adopted to map the inertia matrix from the operational space to the joint space. Based on the inertia matrix in joint space, the average energy transfer efficiency (AETE) index is proposed. Finally, two control techniques for the manipulator implementable in joint space are compared. The AETE index and dynamic modeling method suggested in this article can be further used in other manipulators for dynamic analysis and motion system design.

References

1.
Wu
,
C.
,
Liu
,
X.-J.
,
Wang
,
L.
, and
Wang
,
J.
,
2010
, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031002
.
2.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory.
,
45
(
10
), pp.
1462
1476
.
3.
Li
,
Q.
,
Zhang
,
N.
, and
Wang
,
F.
,
2017
, “
New Indices for Optimal Design of Redundantly Actuated Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011007
.
4.
Meng
,
Q.
,
Xie
,
F.
,
Liu
,
X.-J.
, and
Takeda
,
Y.
,
2020
, “
An Evaluation Approach for Motion-Force Interaction Performance of Parallel Manipulators With Closed-Loop Passive Limbs
,”
Mech. Mach. Theory.
,
149
, p.
103844
.
5.
Meng
,
Q.
,
Xie
,
F.
,
Liu
,
X.-J.
, and
Takeda
,
Y.
,
2020
, “
Screw Theory-Based Motion/Force Transmissibility Analysis of High-Speed Parallel Robots With Articulated Platforms
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041011
.
6.
Xie
,
F.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
7.
Asada
,
H.
,
1984
, “
Dynamic Analysis and Design of Robot Manipulators Using Inertia Ellipsoids
,”
Proceedings. 1984 IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
Mar. 13–15
, Vol. 1, IEEE, pp.
94
102
.
8.
Yoshikawa
,
T.
,
1985
, “
Dynamic Manipulability of Robot Manipulators
,”
Trans. Soc. Instrum. Control Eng.
,
21
(
9
), pp.
970
975
.
9.
Shao
,
Z.-F.
,
Tang
,
X.
,
Chen
,
X.
, and
Wang
,
L.-P.
,
2012
, “
Research on the Inertia Matching of the Stewart Parallel Manipulator
,”
Robot. Comput. Integr. Manuf.
,
28
(
6
), pp.
649
659
.
10.
Mo
,
J.
,
Shao
,
Z.-F.
,
Guan
,
L.
,
Xie
,
F.
, and
Tang
,
X.
,
2017
, “
Dynamic Performance Analysis of the X4 High-Speed Pick-and-Place Parallel Robot
,”
Robot. Comput. Integr. Manuf.
,
46
, pp.
48
57
.
11.
Zou
,
Q.
,
Zhang
,
D.
, and
Huang
,
G.
,
2022
, “
Dynamic Performance Evaluation of the Parallel Mechanism for a 3T2R Hybrid Robot
,”
Mech. Mach. Theory.
,
172
, p.
104794
.
12.
Zhang
,
H.-Q.
,
Fang
,
H.-R.
,
Jiang
,
B.-S.
, and
Wang
,
S.-G.
,
2019
, “
Dynamic Performance Evaluation of a Redundantly Actuated and Over-Constrained Parallel Manipulator
,”
Int. J. Autom. Comput.
,
16
, pp.
274
285
.
13.
Chong
,
Z.
,
Xie
,
F.
,
Liu
,
X.-J.
, and
Wang
,
J.
,
2021
, “
Evaluation of Dynamic Isotropy and Coupling Acceleration Capacity for a Parallel Manipulator With Mixed Dofs
,”
Mech. Mach. Theory.
,
163
, p.
104382
.
14.
Pfeiffer
,
F.
, and
Johanni
,
R.
,
1987
, “
A Concept for Manipulator Trajectory Planning
,”
IEEE J. Robot. Autom.
,
3
(
2
), pp.
115
123
.
15.
Meng
,
Q.
,
Liu
,
X.-J.
, and
Xie
,
F.
,
2022
, “
Structure Design and Kinematic Analysis of a Class of Ring Truss Deployable Mechanisms for Satellite Antennas Based on Novel Basic Units
,”
Mech. Mach. Theory.
,
174
, p.
104881
.
16.
Chen
,
Z.
,
Xu
,
L.
,
Zhang
,
W.
, and
Li
,
Q.
,
2019
, “
Closed-Form Dynamic Modeling and Performance Analysis of an Over-Constrained 2PUR-PSR Parallel Manipulator With Parasitic Motions
,”
Nonlinear Dyn.
,
96
, pp.
517
534
.
17.
Shi
,
H.
,
Zhang
,
J.
,
Wang
,
T.
,
Li
,
R.
, and
Huang
,
Q.
,
2023
, “
Mechanism Design and Kinematic Analysis of a Bioinspired 5-DOF Parallel Driving Mechanism
,”
Mech. Mach. Theory.
,
181
, p.
105178
.
18.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
19.
Meng
,
Q.
,
Liu
,
X.-J.
, and
Xie
,
F.
,
2022
, “
Design and Development of a Schönflies-Motion Parallel Robot With Articulated Platforms and Closed-Loop Passive Limbs
,”
Robot. Comput. Integr. Manuf.
,
77
, p.
102352
.
20.
Xu
,
Y.
,
Liu
,
W.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2015
, “
A Method for Force Analysis of the Overconstrained Lower Mobility Parallel Mechanism
,”
Mech. Mach. Theory.
,
88
, pp.
31
48
.
21.
Xie
,
F.
,
Liu
,
X.-J.
, and
Zhou
,
Y.
,
2014
, “
Optimization of a Redundantly Actuated Parallel Kinematic Mechanism for a 5-Degree-of-Freedom Hybrid Machine Tool
,”
Proc. Inst. Mech. Eng. B.
,
228
(
12
), pp.
1630
1641
.
22.
Li
,
J.
,
Xie
,
F.
, and
Liu
,
X.-J.
,
2016
, “
Geometric Error Modeling and Sensitivity Analysis of a Five-Axis Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
82
, pp.
2037
2051
.
23.
Lu
,
Z.-Q.
,
Wu
,
D.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2021
, “
Vibration Isolation and Energy Harvesting Integrated in a Stewart Platform With High Static and Low Dynamic Stiffness
,”
Appl. Math. Model.
,
89
, pp.
249
267
.
24.
Shan
,
X.
,
Li
,
Y.
,
Liu
,
H.
, and
Huang
,
T.
,
2022
, “
Residual Vibration Reduction of High-Speed Pick-and-Place Parallel Robot Using Input Shaping
,”
Chinese J. Mech. Eng.
,
35
(
1
), pp.
1
8
.
25.
Li-Xin
,
X.
, and
Yong-Gang
,
L.
,
2014
, “
Investigation of Joint Clearance Effects on the Dynamic Performance of a Planar 2-DOF Pick-and-Place Parallel Manipulator
,”
Robot. Comput. Integr. Manuf.
,
30
(
1
), pp.
62
73
.
26.
Polydoros
,
A. S.
,
Boukas
,
E.
, and
Nalpantidis
,
L.
,
2017
, “
Online Multi-Target Learning of Inverse Dynamics Models for Computed-Torque Control of Compliant Manipulators
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
4716
4722
.
27.
Nguyen-Tuong
,
D.
, and
Peters
,
J.
,
2011
, “
Model Learning for Robot Control: A Survey
,”
Cogn. Process.
,
12
, pp.
319
340
.
28.
Tutsoy
,
O.
,
Erol Barkana
,
D.
, and
Colak
,
S.
,
2017
, “
Learning to Balance an NAO Robot Using Reinforcement Learning With Symbolic Inverse Kinematic
,”
Trans. Inst. Meas. Control
,
39
(
11
), pp.
1735
1748
.
29.
Tutsoy
,
O.
, and
Barkana
,
D. E.
,
2021
, “
Model Free Adaptive Control of the Under-Actuated Robot Manipulator With the Chaotic Dynamics
,”
ISA Trans.
,
118
, pp.
106
115
.
30.
Tian
,
Q.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints
,”
Mech. Mach. Theory.
,
122
, pp.
1
57
.
31.
Flores
,
P.
,
Ambrósio
,
J.
,
Claro
,
J. C. P.
,
Lankarani
,
H.
, and
Koshy
,
C.
,
2009
, “
Lubricated Revolute Joints in Rigid Multibody Systems
,”
Nonlinear Dyn.
,
56
, pp.
277
295
.
32.
McGrath
,
M.
,
Howard
,
D.
, and
Baker
,
R.
,
2017
, “
A Lagrange-Based Generalised Formulation for the Equations of Motion of Simple Walking Models
,”
J. Biomech.
,
55
, pp.
139
143
.
33.
Marques
,
F.
,
Roupa
,
I.
,
Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2021
, “
Examination and Comparison of Different Methods to Model Closed Loop Kinematic Chains Using Lagrangian Formulation With Cut Joint, Clearance Joint Constraint and Elastic Joint Approaches
,”
Mech. Mach. Theory.
,
160
, p.
104294
.
34.
Chen
,
M.
,
Zhang
,
Q.
,
Qin
,
X.
, and
Sun
,
Y.
,
2021
, “
Kinematic, Dynamic, and Performance Analysis of a New 3-DOF Over-Constrained Parallel Mechanism Without Parasitic Motion
,”
Mech. Mach. Theory.
,
162
, p.
104365
.
35.
Zhao
,
Y.
, and
Gao
,
F.
,
2009
, “
Inverse Dynamics of the 6-DOF Out-parallel Manipulator by Means of the Principle of Virtual Work
,”
Robotica
,
27
(
2
), pp.
259
268
.
36.
Pedrammehr
,
S.
,
Nahavandi
,
S.
, and
Abdi
,
H.
,
2018
, “
Closed-Form Dynamics of a Hexarot Parallel Manipulator by Means of the Principle of Virtual Work
,”
Acta. Mech. Sin.
,
34
, pp.
883
895
.
37.
Elgolli
,
H.
,
Houidi
,
A.
,
Mlika
,
A.
, and
Romdhane
,
L.
,
2019
, “
Analytical Analysis of the Dynamic of a Spherical Parallel Manipulator
,”
Int. J. Adv. Manuf. Technol.
,
101
, pp.
859
871
.
38.
Huang
,
Y.
,
Zhang
,
J.
,
Xiong
,
X.
, and
Liu
,
S.
,
2023
, “
Kinematic and Dynamic Analysis of a 4-DOF Over-Constraint Parallel Driving Mechanism With Planar Sub-Closed Chains
,”
Robotica
,
41
(
10
), pp.
1
23
.
39.
Shao
,
H.
,
Wang
,
L.
,
Guan
,
L.
, and
Wu
,
J.
,
2009
, “
Dynamic Manipulability and Optimization of a Redundant Three Dof Planar Parallel Manipulator
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
, IEEE, pp.
302
308
.
You do not currently have access to this content.