This article presents a novel method for the dimensional synthesis of Stephenson-II function generators without order, circuit, and branch defects. The explicit equations relating the generated output and specified variables of Stephenson-II function generators are derived by eliminating and transforming angular variables on two five-bar loops and by using the specified values of input and output variables. Then, the deviation between the generated and required angular positions of the output link of the synthesized mechanism is obtained for the objective function. Using the characteristics of order, circuits, branches, and the geometric features of dead-center configurations for Stephenson-II function generators, the constraint equations for avoiding these defects are proposed for the optimal synthesis of Stephenson-II function generators. The synthesized mechanisms are shown to be defect-free and satisfy all functional requirements. An example is given to demonstrate the feasibility of the proposed method.

1.
Waldron
,
K. J.
, and
Stevensen
,
E. N.
, 1979, “
Elimination of Branch, Grashof, and Order Defects in Path-Angle Generation and Function Generation Synthesis
,”
ASME J. Mech. Des.
0161-8458,
101
, pp.
428
437
.
2.
Chuang
,
J. C.
,
Strong
,
R. T.
, and
Waldron
,
K. J.
, 1981, “
Implementation of Solution Rectification Techniques in an Interactive Linkage Synthesis Program
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
657
664
.
3.
Srinivasan
,
U.
,
Sabada
,
S.
,
Kinzel
,
G. L.
, and
Waldron
,
K. J.
, 1988, “
Automatic Synthesis of Four-Bar Mechanisms for Two- and Three-Position Motion Generation
,”
Trans. ASME
0097-6822,
15
(
2
), pp.
113
120
.
4.
Angeles
,
J.
, and
Rojas
,
A.
, 1983, “
An Optimization Approach to the Branching Problem of Plane Linkage Synthesis
,”
Proceedings of the Sixth World Congress on Theory of Machines and Mechanisms
, New Delhi, India, pp.
120
123
.
5.
Tinubu
,
S. O.
, and
Gupta
,
K. C.
, 1984, “
Optimal Synthesis of Function Generators Without the Branch Defect
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
, pp.
348
354
.
6.
Watanabe
,
K.
, and
Funabashi
,
H.
, 1984, “
Kinematic Analysis of Stephenson’s Six-Link Mechanisms
,”
Bull. JSME
0021-3764,
27
(
234
), pp.
2863
2870
.
7.
Yan
,
H. S.
, and
Chiou
,
S. T.
, 1987, “
An Algorithm for the Optimal Synthesis of Complex Function Generations
,”
Eng. Optimiz.
0305-215X,
12
, pp.
75
88
.
8.
Krishnamurty
,
S.
, and
Turcic
,
D. A.
, 1988, “
A General Method of Determining and Eliminating Branching in Planar Multiloop Mechanisms
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
414
422
.
9.
Krishnamurty
,
S.
, and
Turcic
,
D. A.
, 1992, “
Branching Determination in Nondyadic Planar Multiloop Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
114
, pp.
245
250
.
10.
Chase
,
T. R.
, and
Mirth
,
J. A.
, 1993, “
Circuits and Branches of Single Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
223
230
.
11.
Davis
,
H. P.
,
Chase
,
T. R.
, and
Mirth
,
J. A.
, 1994, “
Circuit Analysis of Stephenson Chain Six-Bar Mechanisms
,”
Trans. ASME
0097-6822,
70
, pp.
349
358
.
12.
Mirth
,
J. A.
, and
Chase
,
T. R.
, 1995, “
Circuits Rectification for Four Precision Positions Synthesis of Stephenson Six-Bar Linkages
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
644
646
.
13.
Bawab
,
S.
,
Kinzel
,
G. L.
, and
Waldron
,
K. J.
, 1996, “
Rectified Synthesis of Six-Bar Mechanisms With Well-Defined Transmission Angles for Four-Position Motion Generation
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
377
383
.
14.
Beloiu
,
A. S.
, and
Gupta
,
K. C.
, 1997, “
A Unified Approach for the Investigation of Branch and Circuits Defects
,”
Mech. Mach. Theory
0094-114X,
32
, pp.
539
557
.
15.
Balli
,
S. S.
, and
Chand
,
S.
, 2002, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
851
876
.
16.
Watanabe
,
K.
, and
Katoh
,
H.
, 2004, “
Identification of Motion Domains of Planar Six-Link Mechanisms of the Stephenson-Type
,”
Mech. Mach. Theory
0094-114X,
39
, pp.
1081
1099
.
17.
Foster
,
D. E.
, and
Cipra
,
R. J.
, 2006, “
Assembly Configurations of Planar Multi-Loop Mechanisms With Kinematic Limitations
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
747
754
.
18.
Tsai
,
C. C.
, and
Wang
,
L. C. T.
, 2006, “
On the Dead-Centre Position Analysis of Stephenson Six-Link Linkages
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
220
, pp.
1393
1404
.
19.
Tsai
,
C. C.
, and
Wang
,
L. C. T.
, 2007, “
Branch Identification and Motion Domain Analysis of Stephenson Type Six-Bar Linkages
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
221
, pp.
589
604
.
20.
Hwang
,
W. M.
, and
Chen
,
Y. J.
, 2008, “
Defect-Free Synthesis of Stephenson-III Motion Generators
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
222
, pp.
2485
2494
.
21.
Hwang
,
W. M.
, and
Chen
,
Y. J.
, 2009, “
Defect-Free Synthesis of Watt-I Mechanisms for Motion Generation
,”
J. Chin. Soc. Mech. Eng.
0257-9731,
30
(
3
), pp.
173
180
.
22.
Ting
,
K. L.
,
Wang
,
J.
,
Xue
,
C.
, and
Currie
,
K. R.
, 2010, “
Full Rotatability and Singularity of Six-Bar and Geared Five-Bar Linkages
,”
ASME J. Mech. Rob.
1942-4302,
2
, p.
011011
.
23.
Yan
,
H. S.
, and
Wu
,
L. I.
, 1988, “
The Stationary Configurations of Planar Six-bar Kinematic Chains
,”
Mech. Mach. Theory
0094-114X,
23
, pp.
287
293
.
24.
Freudenstein
,
F.
, 1959, “
Structural Error Analysis in Plane Kinematic Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
81
, pp.
15
22
.
25.
Hartenberg
,
R. S.
, and
Denavit
,
J.
, 1964,
Kinematics Synthesis of Linkages
,
McGraw-Hill
,
New York
, p.
314
.
26.
The MathWorks
, 2007, Optimization Toolbox User’s Guide.
27.
Schittkowski
,
K.
, 1985, “
NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems
,”
Ann. Operat. Res.
0254-5330,
5
, pp.
485
500
.
You do not currently have access to this content.