The 3-RPS cube parallel manipulator, a three-degree-of-freedom parallel manipulator initially proposed by Huang and Fang (1995, “Motion Characteristics and Rotational Axis Analysis of Three DOF Parallel Robot Mechanisms,” IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, Vancouver, BC, Canada, Oct. 22–25, pp. 67–71) is analyzed in this paper with an algebraic approach, namely, Study kinematic mapping of the Euclidean group SE(3) and is described by a set of eight constraint equations. A primary decomposition is computed over the set of eight constraint equations and reveals that the manipulator has only one operation mode. Inside this operation mode, it turns out that the direct kinematics of the manipulator with arbitrary values of design parameters and joint variables, has 16 solutions in the complex space. A geometric interpretation of the real solutions is given. The singularity conditions are obtained by deriving the determinant of the Jacobian matrix of the eight constraint equations. All the singular poses are mapped onto the joint space and are geometrically interpreted. By parametrizing the set of constraint equations under the singularity conditions, it is shown that the manipulator is in actuation singularity. The uncontrolled motion gained by the moving platform is also provided. The motion of the moving platform is essentially determined by the fact that three vertices in the moving platform move in three mutually orthogonal planes. The workspace of each point of the moving platform (with exception of the three vertices) is bounded by a Steiner surface. This type of motion has been studied by Darboux in 1897. Moreover, the 3DOF motion of the 3-RPS cube parallel manipulator contains a special one-degree-of-freedom motion, called the vertical Darboux motion (VDM). In this motion, the moving platform can rotate and translate about and along the same axis simultaneously. The surface generated by a line in the moving platform turns out to be a right-conoid surface.
Skip Nav Destination
et Cybernétique de Nantes,
e-mail: latifah.nurahmi@irccyn.ec-nantes.fr
et Cybernétique de Nantes,
e-mail: stephane.caro@irccyn.ec-nantes.fr
et Cybernétique de Nantes,
e-mail: philippe.wenger@irccyn.ec-nantes.fr
Article navigation
February 2015
Research-Article
Kinematic Analysis of the 3-RPS Cube Parallel Manipulator
Latifah Nurahmi,
et Cybernétique de Nantes,
e-mail: latifah.nurahmi@irccyn.ec-nantes.fr
Latifah Nurahmi
Institut de Recherche en Communications
et Cybernétique de Nantes,
1, Rue de la Noë
,Nantes 44321
, France
e-mail: latifah.nurahmi@irccyn.ec-nantes.fr
Search for other works by this author on:
Josef Schadlbauer,
Josef Schadlbauer
Unit Geometry and CAD,
e-mail: josef.schadlbauer@uibk.ac.at
University of Innsbruck
,Technikerstraße 13
,Innsbruck 6020
, Austria
e-mail: josef.schadlbauer@uibk.ac.at
Search for other works by this author on:
Stéphane Caro,
et Cybernétique de Nantes,
e-mail: stephane.caro@irccyn.ec-nantes.fr
Stéphane Caro
1
Institut de Recherche en Communications
et Cybernétique de Nantes,
1, Rue de la Noë
,Nantes 44321
, France
e-mail: stephane.caro@irccyn.ec-nantes.fr
1Corresponding author.
Search for other works by this author on:
Manfred Husty,
Manfred Husty
Unit Geometry and CAD,
e-mail: manfred.husty@uibk.ac.at
University of Innsbruck
,Technikerstraße 13
,Innsbruck 6020
, Austria
e-mail: manfred.husty@uibk.ac.at
Search for other works by this author on:
Philippe Wenger
et Cybernétique de Nantes,
e-mail: philippe.wenger@irccyn.ec-nantes.fr
Philippe Wenger
Institut de Recherche en Communications
et Cybernétique de Nantes,
1, Rue de la Noë
,Nantes 44321
, France
e-mail: philippe.wenger@irccyn.ec-nantes.fr
Search for other works by this author on:
Latifah Nurahmi
Institut de Recherche en Communications
et Cybernétique de Nantes,
1, Rue de la Noë
,Nantes 44321
, France
e-mail: latifah.nurahmi@irccyn.ec-nantes.fr
Josef Schadlbauer
Unit Geometry and CAD,
e-mail: josef.schadlbauer@uibk.ac.at
University of Innsbruck
,Technikerstraße 13
,Innsbruck 6020
, Austria
e-mail: josef.schadlbauer@uibk.ac.at
Stéphane Caro
Institut de Recherche en Communications
et Cybernétique de Nantes,
1, Rue de la Noë
,Nantes 44321
, France
e-mail: stephane.caro@irccyn.ec-nantes.fr
Manfred Husty
Unit Geometry and CAD,
e-mail: manfred.husty@uibk.ac.at
University of Innsbruck
,Technikerstraße 13
,Innsbruck 6020
, Austria
e-mail: manfred.husty@uibk.ac.at
Philippe Wenger
Institut de Recherche en Communications
et Cybernétique de Nantes,
1, Rue de la Noë
,Nantes 44321
, France
e-mail: philippe.wenger@irccyn.ec-nantes.fr
1Corresponding author.
Manuscript received September 26, 2014; final manuscript received December 1, 2014; published online December 31, 2014. Assoc. Editor: Thomas Sugar.
J. Mechanisms Robotics. Feb 2015, 7(1): 011008 (11 pages)
Published Online: February 1, 2015
Article history
Received:
September 26, 2014
Revision Received:
December 1, 2014
Online:
December 31, 2014
Citation
Nurahmi, L., Schadlbauer, J., Caro, S., Husty, M., and Wenger, P. (February 1, 2015). "Kinematic Analysis of the 3-RPS Cube Parallel Manipulator." ASME. J. Mechanisms Robotics. February 2015; 7(1): 011008. https://doi.org/10.1115/1.4029305
Download citation file:
Get Email Alerts
Cooperative Object Transport via Non-contact Prehensile Pushing by Magnetic Forces
J. Mechanisms Robotics
Special Issue: Selected Papers from IDETC-CIE 2023
J. Mechanisms Robotics
Related Articles
Forward Acceleration of Kinematic Limbs for Redundant Serial–Parallel Manipulators
J. Mechanisms Robotics (February,2020)
Determination of the Workspace of a Three-Degrees-of-Freedom Parallel Manipulator Using a Three-Dimensional Computer-Aided-Design Software Package and the Concept of Virtual Chains
J. Mechanisms Robotics (April,2016)
Kinematic Performance and Static Analysis of a Two-Degree-of-Freedom 3-RPS/US Parallel Manipulator With Two Passive Limbs
J. Mechanisms Robotics (April,2023)
Direct Kinematic Analysis of the Spatial Parallel Mechanism With 3-R(P)S Structure Based on the Point Pair Relationship
J. Mechanisms Robotics (December,2021)
Related Proceedings Papers
Related Chapters
Feedback-Aided Minimum Joint Motion
Robot Manipulator Redundancy Resolution
Pseudoinverse Method and Singularities Discussed
Robot Manipulator Redundancy Resolution
Manipulability-Maximizing SMP Scheme
Robot Manipulator Redundancy Resolution