Microrobotics is an ongoing study all over the world for which design is often inspired from macroscale robots. We have proposed the design of a new kind of microfabricated microrobot based on the use of binary actuators in order to generate a highly accurate and repeatable tool for positioning tasks at microscale without any sensor (with open-loop control). Our previous work consisted in the design, modeling, fabrication, and characterization of the first planar digital microrobot. In this paper, we focus on the motion planning of this robot for micromanipulation tasks. The complex motion pattern of this robot requires the use of algorithms. Graph theory is well suited for the discrete workspace generated by this robot. The comparison between several well-known trajectory-planning algorithms is done. A new graphical representation, named the hypercubic graph, is used for improving the computation speed of the algorithm. This is particularly useful for large workspace robots.

References

1.
Yamahata
,
C.
,
Collard
,
D.
,
Legrand
,
B.
,
Takekawa
,
T.
,
Kumemura
,
M.
,
Hashiguchi
,
G.
, and
Fujita
,
H.
,
2008
, “
Silicon Nanotweezers With Subnanometer Resolution for the Micromanipulation of Biomolecules
,”
J. Microelectromech. Syst.
,
17
(
3
), pp.
623
631
.
2.
Das
,
A. J. S.
,
Popa
,
D.
, and
Stephanou
,
H.
,
2008
, “
On the Precision Alignment and Hybrid Assembly Aspects in Manufacturing of a Microspectrometer
,”
IEEE Conference on Automation Science and Engineering
(
CASE 2008
), Arlington, VA, Aug. 23–26, pp.
959
966
.
3.
Rhee
,
M.
, and
Burns
,
M. A.
,
2008
, “
Microfluidic Assembly Blocks
,”
Lab Chip
,
8
(
8
), pp.
1365
1373
.
4.
Chronis
,
N.
, and
Lee
,
N.
,
2005
, “
Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
, pp.
857
863
.
5.
Schmoeckel
,
F.
, and
Wörn
,
H.
,
2001
, “
Remotely Controllable Mobile Microrobots Acting as Nano Positioners and Intelligent Tweezers in Scanning Electron Microscopes (SEMs)
,”
IEEE International Conference on Robotics and Automation
(
2001 ICRA
), Seoul, South Korea, May 21–26, pp.
3909
3913
.
6.
Beyeler
,
F.
,
Neild
,
A.
,
Oberti
,
S.
,
Bell
,
D.
,
Sun
,
Y.
,
Dual
,
J.
, and
Nelson
,
B.
,
2007
, “
Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field
,”
J. Microelectromech. Syst.
,
16
(
1
), pp.
7
15
.
7.
Kim
,
K.
,
Liu
,
S.
,
Zhang
,
Y.
, and
Sun
,
Y.
,
2008
, “
Nanonewton Force-Controlled Manipulation of Biological Cells Using a Monolithic MEMS Microgripper With Two-Axis Force Feedback
,”
J. Micromech. Microeng.
,
18
(
5
), p.
055013
.
8.
Yong
,
Y.
,
Aphale
,
S.
, and
Moheimani
,
S.
,
2009
, “
Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning
,”
IEEE Trans. Nanotechnol.
,
8
(
1
), pp.
46
54
.
9.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
,
2000
, “
Kinematic Analysis of Translational 3-d.o.f. Micro-Parallel Mechanism Using Matrix Method
,”
Adv. Rob.
,
16
(
3
), pp.
251
264
.
10.
Dong
,
J.
,
Mukhopadhyay
,
D.
, and
Ferreira
,
P. M.
,
2007
, “
Design, Fabrication and Testing of a Silicon-on-Insulator (SOI) MEMS Parallel Kinematics XY Stage
,”
J. Micromech. Microeng.
,
17
(
6
), pp.
1154
1161
.
11.
Tian
,
Y.
,
Shirinzadeh
,
B.
,
Zhang
,
D.
,
Liu
,
X.
, and
Chetwynd
,
D.
,
2009
, “
Design and Forward Kinematics of the Compliant Micro-Manipulator With Lever Mechanisms
,”
Precis. Eng.
,
33
(
4
), pp.
466
475
.
12.
Rakotondrabe
,
M.
,
Clévy
,
C.
, and
Lutz
,
P.
,
2008
, “
Hysteresis and Vibration Compensation in a Nonlinear Unimorph Piezocantilever
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
558
563
.
13.
Chirikjian
,
G.
,
1994
, “
A Binary Paradigm for Robotic Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Diego, CA, May 8–13, pp.
3063
3069
.
14.
Ebert-Uphoff
,
I.
, and
Chirikjian
,
G.
,
1995
, “
Efficient Workspace Generation for Binary Manipulators With Many Actuators
,”
J. Rob. Syst.
,
12
(
6
), pp.
383
400
.
15.
Lees
,
D.
, and
Chirikjian
,
G.
,
1996
, “
A Combinatorial Approach to Trajectory Planning for Binary Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Minneapolis, MN, Apr. 22–28, pp.
2749
2754
.
16.
Chen
,
Q.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2008
, “
Digital Microrobotics Based on Bistable Modules: Design of Compliant Bistable Structures
,”
IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
(
MESA 2008
), Beijing, Oct. 12–15, pp.
36
41
.
17.
Chen
,
Q.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2011
, “
Microfabricated Bistable Module for Digital Microrobotics
,”
J. Micro Nano Mechatron.
,
6
(
1
), pp.
1
12
.
18.
Chalvet
,
V.
,
Zarzycki
,
A.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2011
, “
Digital Microrobotics Based on Bistable Modules: Design of a Non-Redundant Digital Micropositioning Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
3628
3633
.
19.
Chalvet
,
V.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2013
, “
A Microfabricated Planar Digital Microrobot for Precise Positioning Based on Bistable Modules
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
641
649
.
20.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.
21.
Hart
,
P.
,
Nilsson
,
N.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
100
107
.
You do not currently have access to this content.