In this article, a novel method for characterizing the exact solution for interval linear systems is presented. In the proposed method, the entries of the interval coefficient matrix and interval right-hand side vector are formulated as linear functions of two or three parameters. The parameter groups for two- and three-parameter cases are identified. The exact solution is characterized using the solution sets corresponding to the parameter groups. The parametric method is then employed in the motion analysis of manipulators considering the uncertainty in kinematic parameters. Example manipulators are used to show the implementation of the method and the effect of uncertainty in the motion performance.

References

1.
Roth
,
Z.
,
Mooring
,
B.
, and
Ravani
,
B.
,
1987
, “
An Overview of Robot Calibration
,”
IEEE J. Rob. Autom.
,
3
(
5
), pp.
377
385
.
2.
Dawood
,
H.
,
2011
,
Theories of Interval Arithmetic: Mathematical Foundations and Applications
,
Lambert Academic Publishing
,
Saarbrücken, Germany
.
3.
Moore
,
R. E.
,
1966
,
Interval Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
4.
Rao
,
R. S.
,
Asaithambi
,
A.
, and
Agrawal
,
S. K.
,
1998
, “
Inverse Kinematic Solution of Robot Manipulators Using Interval Analysis
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
147
150
.
5.
Merlet
,
J.
,
2004
, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Rob. Res.
,
23
(
3
), pp.
221
235
.
6.
Merlet
,
J. P.
, and
Daney
,
D.
,
2001
, “
A Formal-Numerical Approach to Determine the Presence of Singularity Within the Workspace of a Parallel Robot
,”
2nd Workshop on Computational Kinematics
,
Seoul, South Korea
, May 20–22, pp.
167
176
.
7.
Tagawa
,
K.
,
Takami
,
H.
,
Shiraki
,
K.
, and
Haneda
,
H.
,
2001
, “
Optimal Configuration Problem of Redundant Arms Considering Endpoint Compliance and Its Solution Using Interval Analysis
,”
Trans. Soc. Instrum. Control Eng.
,
37
(
10
), pp.
990
992
.
8.
Carreras
,
C.
, and
Walker
,
I. D.
,
2001
, “
Interval Methods for Fault-Tree Analysis in Robotics
,”
IEEE Trans. Reliab.
,
50
(
1
), pp.
3
11
.
9.
Daney
,
D.
,
Nicolas
,
A.
,
Gilles
,
Ch.
, and
Yves
,
P.
,
2006
, “
Interval Method for Calibration of Parallel Robots: Vision-Based Experiments
,”
Mech. Mach. Theory
,
41
(
8
), pp.
929
944
.
10.
Oettli
,
W.
,
1965
, “
On the Solution Set of a Linear System With Inaccurate Coefficients
,”
J. Soc. Ind. Appl. Math., Ser. B
,
2
(
1
), pp.
115
118
.
11.
Hansen
,
E.
, and
Smith
,
R.
,
1967
, “
Interval Arithmetic in Matrix Computations, Part II
,”
SIAM J. Numer. Anal.
,
4
(
1
), pp.
1
9
.
12.
Neumaier
,
A.
,
2008
,
Interval Methods for Systems of Equations
,
Cambridge University Press
,
Cambridge, UK
.
13.
Oettli
,
W.
,
Prager
,
W.
, and
Wilkinson
,
J.
,
1965
, “
Admissible Solutions of Linear Systems With Not Sharply Defined Coefficients
,”
J. Soc. Ind. Appl. Math., Ser. B
,
2
(
2
), pp.
291
299
.
14.
Hartfiel
,
D.
,
1980
, “
Concerning the Solution Set of Ax = B Where P ≤ A ≤ Q and P ≤ B ≤ Q
,”
J. Numer. Math.
,
35
(
3
), pp.
355
359
.
15.
Hansen
,
E.
,
1992
, “
Bounding the Solution of Interval Linear Equations
,”
SIAM J. Numer. Anal.
,
29
(
5
), pp.
1493
1503
.
16.
Jansson
,
C.
,
1991
, “
Interval Linear Systems With Symmetric Matrices, Skew-Symmetric Matrices and Dependencies in the Right Hand Side
,”
J. Comput.
,
46
(
3
), pp.
265
274
.
17.
Rump
,
S. M.
,
1994
, “
Verification Methods for Dense and Sparse Systems of Equations
,”
Topics in Validated Computations, Studies in Computational Mathematics
,
J.
Herzberger
, ed.,
Elsevier
,
Amsterdam
, pp.
63
136
.
18.
Popova
,
E.
, and
Krämer
,
W.
,
2008
, “
Visualizing Parametric Solution Sets
,”
BIT Numer. Math.
,
48
(
1
), pp.
95
115
.
19.
Moore
,
R. E.
,
Cloud
,
M. J.
, and
Kearfott
,
R. B.
,
2009
,
Introduction to Interval Analysis
,
SIAM
, Philadelphia.
20.
Paul
,
R. P.
,
1981
,
Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators
,
MIT Press
, Cambridge, MA.
21.
Hayati
,
S. A.
,
1983
, “
Robot Arm Geometric Link Parameter Estimation
,”
22nd IEEE Conference on Decision and Control
(
CDC
), San Antonio, TX, Dec. 14–16, Vol.
22
, pp.
1477
1483
.
22.
Rohn
,
J.
,
2005
, “
A Handbook of Results on Interval Linear Problems
,” http://www.Cs.Cas.Cz/Rohn/Handbook
23.
Popova
,
E. D.
,
2004
, “
Strong Regularity of Parametric Interval Matrices
,”
33rd Spring Conference of the Union of Bulgarian Mathematicians:
Mathematics and Education in Mathematics
,
Borovetz, Bulgaria
, Apr. 1–4, pp.
446
451
.
24.
Hladík
,
M.
,
2012
, “
Enclosures for the Solution Set of Parametric Interval Linear Systems
,”
Int. J. Appl. Math. Comput. Sci.
,
22
(
3
), pp.
561
574
.
25.
Rump
,
S. M.
,
1999
, “
INTLAB—INTerval LABoratory
,”
Developments in Reliable Computing
,
T.
Csendes
, ed.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
77
104
.
This content is only available via PDF.
You do not currently have access to this content.