In this article, a novel method for characterizing the exact solution for interval linear systems is presented. In the proposed method, the entries of the interval coefficient matrix and interval right-hand side vector are formulated as linear functions of two or three parameters. The parameter groups for two- and three-parameter cases are identified. The exact solution is characterized using the solution sets corresponding to the parameter groups. The parametric method is then employed in the motion analysis of manipulators considering the uncertainty in kinematic parameters. Example manipulators are used to show the implementation of the method and the effect of uncertainty in the motion performance.
Issue Section:
Research Papers
Keywords:
Theoretical kinematics
References
1.
Roth
, Z.
, Mooring
, B.
, and Ravani
, B.
, 1987
, “An Overview of Robot Calibration
,” IEEE J. Rob. Autom.
, 3
(5
), pp. 377
–385
.2.
Dawood
, H.
, 2011
, Theories of Interval Arithmetic: Mathematical Foundations and Applications
, Lambert Academic Publishing
, Saarbrücken, Germany
.3.
Moore
, R. E.
, 1966
, Interval Analysis
, Prentice Hall
, Englewood Cliffs, NJ
.4.
Rao
, R. S.
, Asaithambi
, A.
, and Agrawal
, S. K.
, 1998
, “Inverse Kinematic Solution of Robot Manipulators Using Interval Analysis
,” ASME J. Mech. Des.
, 120
(1
), pp. 147
–150
.5.
Merlet
, J.
, 2004
, “Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,” Int. J. Rob. Res.
, 23
(3
), pp. 221
–235
.6.
Merlet
, J. P.
, and Daney
, D.
, 2001
, “A Formal-Numerical Approach to Determine the Presence of Singularity Within the Workspace of a Parallel Robot
,” 2nd Workshop on Computational Kinematics
, Seoul, South Korea
, May 20–22, pp. 167
–176
.7.
Tagawa
, K.
, Takami
, H.
, Shiraki
, K.
, and Haneda
, H.
, 2001
, “Optimal Configuration Problem of Redundant Arms Considering Endpoint Compliance and Its Solution Using Interval Analysis
,” Trans. Soc. Instrum. Control Eng.
, 37
(10
), pp. 990
–992
.8.
Carreras
, C.
, and Walker
, I. D.
, 2001
, “Interval Methods for Fault-Tree Analysis in Robotics
,” IEEE Trans. Reliab.
, 50
(1
), pp. 3
–11
.9.
Daney
, D.
, Nicolas
, A.
, Gilles
, Ch.
, and Yves
, P.
, 2006
, “Interval Method for Calibration of Parallel Robots: Vision-Based Experiments
,” Mech. Mach. Theory
, 41
(8
), pp. 929
–944
.10.
Oettli
, W.
, 1965
, “On the Solution Set of a Linear System With Inaccurate Coefficients
,” J. Soc. Ind. Appl. Math., Ser. B
, 2
(1
), pp. 115
–118
.11.
Hansen
, E.
, and Smith
, R.
, 1967
, “Interval Arithmetic in Matrix Computations, Part II
,” SIAM J. Numer. Anal.
, 4
(1
), pp. 1
–9
.12.
Neumaier
, A.
, 2008
, Interval Methods for Systems of Equations
, Cambridge University Press
, Cambridge, UK
.13.
Oettli
, W.
, Prager
, W.
, and Wilkinson
, J.
, 1965
, “Admissible Solutions of Linear Systems With Not Sharply Defined Coefficients
,” J. Soc. Ind. Appl. Math., Ser. B
, 2
(2
), pp. 291
–299
.14.
Hartfiel
, D.
, 1980
, “Concerning the Solution Set of Ax = B Where P ≤ A ≤ Q and P ≤ B ≤ Q
,” J. Numer. Math.
, 35
(3
), pp. 355
–359
.15.
Hansen
, E.
, 1992
, “Bounding the Solution of Interval Linear Equations
,” SIAM J. Numer. Anal.
, 29
(5
), pp. 1493
–1503
.16.
Jansson
, C.
, 1991
, “Interval Linear Systems With Symmetric Matrices, Skew-Symmetric Matrices and Dependencies in the Right Hand Side
,” J. Comput.
, 46
(3
), pp. 265
–274
.17.
Rump
, S. M.
, 1994
, “Verification Methods for Dense and Sparse Systems of Equations
,” Topics in Validated Computations, Studies in Computational Mathematics
, J.
Herzberger
, ed., Elsevier
, Amsterdam
, pp. 63
–136
.18.
Popova
, E.
, and Krämer
, W.
, 2008
, “Visualizing Parametric Solution Sets
,” BIT Numer. Math.
, 48
(1
), pp. 95
–115
.19.
Moore
, R. E.
, Cloud
, M. J.
, and Kearfott
, R. B.
, 2009
, Introduction to Interval Analysis
, SIAM
, Philadelphia.20.
Paul
, R. P.
, 1981
, Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators
, MIT Press
, Cambridge, MA.21.
Hayati
, S. A.
, 1983
, “Robot Arm Geometric Link Parameter Estimation
,” 22nd IEEE Conference on Decision and Control
(CDC
), San Antonio, TX, Dec. 14–16, Vol. 22
, pp. 1477
–1483
.22.
Rohn
, J.
, 2005
, “A Handbook of Results on Interval Linear Problems
,” http://www.Cs.Cas.Cz/Rohn/Handbook23.
Popova
, E. D.
, 2004
, “Strong Regularity of Parametric Interval Matrices
,” 33rd Spring Conference of the Union of Bulgarian Mathematicians:
Mathematics and Education in Mathematics
, Borovetz, Bulgaria
, Apr. 1–4, pp. 446
–451
.24.
Hladík
, M.
, 2012
, “Enclosures for the Solution Set of Parametric Interval Linear Systems
,” Int. J. Appl. Math. Comput. Sci.
, 22
(3
), pp. 561
–574
.25.
Rump
, S. M.
, 1999
, “INTLAB—INTerval LABoratory
,” Developments in Reliable Computing
, T.
Csendes
, ed., Kluwer Academic Publishers
, Dordrecht, The Netherlands
, pp. 77
–104
.
This content is only available via PDF.
Copyright © 2016 by ASME
You do not currently have access to this content.