This paper presents the design evolution of the sensing and force-feedback exoskeleton robotic (SAFER) glove with application to hand rehabilitation. The hand grasping rehabilitation system is designed to gather kinematic and force information from the human hand and then playback the motion to assist a user in common hand grasping movements, such as grasping a bottle of water. Grasping experiments were conducted where fingertip contact forces were measured by the SAFER glove. These forces were then modeled based on a machine learning approach to obtain the learned contact force distributions. Using these distributions, fingertip force trajectories were generated with a Gaussian mixture regression (GMR) method. To demonstrate the glove's effectiveness to manipulate the hand, experiments were performed using the glove to demonstrate grasping capabilities on several objects. Instead of defining a grasping force, contact force trajectories were used to control the SAFER glove in order to actuate a user's hand while carrying out a learned grasping task.

References

1.
Demain
,
S.
,
Metcalf
,
C. D.
,
Merrett
,
G. V.
,
Zheng
,
D.
, and
Cunningham
,
S.
,
2013
, “
A Narrative Review on Haptic Devices: Relating the Physiology and Psychophysical Properties of the Hand to Devices for Rehabilitation in Central Nervous System Disorders
,”
Disability Rehabil. Assistive Technol.
,
8
(
3
), pp.
181
189
.
2.
Heo
,
P.
,
Gu
,
G. M.
,
Lee
,
S.
,
Rhee
,
K.
, and
Kim
,
J.
,
2012
, “
Current Hand Exoskeleton Technologies for Rehabilitation and Assistive Engineering
,”
Int. J. Precis. Eng. Manuf.
,
13
(
5
), pp.
807
824
.
3.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
922
931
.
4.
Sugar
,
T. G.
,
He
,
J.
,
Koeneman
,
E. J.
,
Koeneman
,
J. B.
,
Herman
,
R.
,
Huang
,
H.
,
Schultz
,
R. S.
,
Herring
,
D. E.
,
Wanberg
,
J.
,
Balasubramanian
,
S.
,
Swenson
,
P.
, and
Ward
,
J. A.
,
2007
, “
Design and Control of RUPERT: A Device for Robotic Upper Extremity Repetitive Therapy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
336
346
.
5.
Mehrholz
,
J.
, and
Marcus
,
P.
,
2012
, “
Electromechanical-Assisted Gait Training After Stroke: A Systematic Review Comparing End-Effector and Exoskeleton Devices
,”
J. Rehabil. Med.
,
44
(
3
), pp.
193
199
.
6.
Yin
,
Y. H.
,
Fan
,
Y. J.
, and
Xu
,
L. D.
,
2012
, “
EMG and EPP-Integrated Human–Machine Interface Between the Paralyzed and Rehabilitation Exoskeleton
,”
IEEE Trans. Inf. Technol. Biomed.
,
16
(
4
), pp.
542
549
.
7.
Tubiana
,
R.
,
Thomine
,
J.
, and
Mackin
,
E.
,
1984
,
Examination of the Hand and Upper Limb
,
WB Saunders
, Philadelphia, PA, p.
79
.
8.
Lee
,
S. W.
,
Landers
,
K. A.
, and
Hyung-Soon
,
P.
,
2014
, “
Development of a Biomimetic Hand Exotendon Device (BiomHED) for Restoration of Functional Hand Movement Post-Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
886
898
.
9.
Jack
,
D.
,
Boian
,
R.
,
Merians
,
A.
,
Adamovich
,
S.
,
Tremaine
,
M.
,
Recce
,
M.
,
Burdea
,
G.
, and
Poizner
,
H.
,
2000
, “
A Virtual Reality-Based Exercise Program for Stroke Rehabilitation
,”
4th ACM SIGCAPH Conference
on Assistive Technologies (
Assets '00
), Arlington, VA, Nov. 13–15, pp. 56–63.
10.
Heuser
,
A.
,
Kourtev
,
H.
,
Winter
,
S.
,
Fensterheim
,
D.
,
Burdea
,
G.
,
Hentz
,
V.
, and
Forducey
,
P.
,
2007
, “
Telerehabilitation Using the Rutgers Master II Glove Following Carpal Tunnel Release Surgery: Proof-of-Concept
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
1
), pp.
43
49
.
11.
VRLogic
,
1999
, “Datagloves—Cyberglove,” VRLogic GmbH, Dieburg, Germany, http://www.vrlogic.com/index.php/en/datagloves/cyberglovesystems
12.
Connelly
,
L.
,
Jia
,
Y.
,
Toro
,
M. L.
,
Stoykov
,
M. E.
,
Kenyon
,
R. V.
, and
Kamper
,
D. G.
,
2010
, “
A Pneumatic Glove and Immersive Virtual Reality Environment for Hand Rehabilitative Training After Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
5
), pp.
551
559
.
13.
Arata
,
J.
,
Ohmoto
,
K.
,
Gassert
,
R.
,
Lambercy
,
O.
,
Fujimoto
,
H.
, and
Wada
,
I.
,
2013
, “
A New Hand Exoskeleton Device for Rehabilitation Using a Three-Layered Sliding Spring Mechanism
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp. 3902–3907.
14.
Diftler
,
M. A.
,
Ihrke
,
C. A.
,
Bridgwater
,
L. B.
,
Davis
,
D. R.
,
Linn
,
D. M.
,
Laske
,
E. A.
,
Ensley
,
K. G.
, and
Lee
,
J. H.
,
2014
, “
RoboGlove—A Robonaut Derived Multipurpose Assistive Device
,”
International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7.
15.
Ma
,
Z.
, and
Ben-Tzvi
,
P.
,
2015
, “
RML Glove—An Exoskeleton Glove Mechanism With Haptics Feedback
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
641
652
.
16.
Kawasaki
,
H.
,
Ito
,
S.
,
Ishigure
,
Y.
,
Nishimoto
,
Y.
,
Aoki
,
T.
,
Mouri
,
T.
,
Sakaeda
,
H.
, and
Abe
,
M.
,
2007
, “
Development of a Hand Motion Assist Robot for Rehabilitation Therapy by Patient Self-Motion Control
,”
IEEE International Conference on Robotic Rehabilitation
(
ICORR 2007
), Noordwijk, The Netherlands, June 13–15, pp.
234
240
.
17.
Dovat
,
L.
,
Lambercy
,
O.
,
Gassert
,
R.
,
Maeder
,
T.
,
Milner
,
T.
,
Leong
,
T. C.
, and
Burdet
,
E.
,
2008
, “
HandCARE: A Cable-Actuated Rehabilitation System to Train Hand Function After Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
16
(
6
), pp.
582
591
.
18.
Endo
,
T.
,
Tanimura
,
S.
, and
Kawasaki
,
H.
,
2013
, “
Development of Tool-Type Devices for a Multi-Fingered Haptic Interface Robot
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
68
81
.
19.
QAL Medical
,
2014
, “
6000X WaveFlex Hand CPM
,” QAL Medical LLC, Marinette, WI, http://qalmedical.com/waveflex-hand-cpm-device/
20.
Schabowsky
,
C.
,
Godfrey
,
S.
,
Holley
,
R.
, and
Lum
,
P.
,
2010
, “
Development and Pilot Testing of HEXORR: Hand EXOskeleton Rehabilitation Robot
,”
J. NeuroEng. Rehabil.
,
7
(
1
),
p. 36
.
21.
Takahashi
,
C. D.
,
Der-Yeghiaian
,
L.
,
Le
,
V.
, and
Cramer
,
S.
,
2005
, “
A Robotic Device for Hand Motor Therapy After Stroke
,”
IEEE 9th International Conference on Rehabilitation Robotics: Frontiers of the Human-Machine Interface
(
ICORR 2005
), Chicago, IL, June 28–July 1, pp. 17–20.
22.
Kadowaki
,
Y.
,
Noritsugu
,
T.
,
Takaiwa
,
M.
,
Sasaki
,
D.
, and
Kato
,
M.
,
2011
, “
Development of Soft Power-Assist Glove and Control Based on Human Intent
,”
J. Rob. Mechatronics
,
23
(
2
), pp.
281
–291.
23.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2014
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
.
24.
Vanoglio
,
F.
,
Luisa
,
A.
,
Garofali
,
F.
, and
Mora
,
C.
,
2013
, “
Evaluation of the Effectiveness of Gloreha (Hand Rehabilitation Glove) on Hemiplegic Patients. Pilot Study
,”
XIII Congress of Italian Society of Neurorehabilitation
, Bari, Italy, Apr. 18–20.
25.
Ma
,
Z.
, and
Ben-Tzvi
,
P.
,
2015
, “
Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
6
), pp.
992
1002
.
26.
Ma
,
Z.
, and
Ben-Tzvi
,
P.
,
2015
, “
Design and Optimization of a Five-Finger Haptic Glove Mechanism
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041008
.
27.
Ma
,
Z.
,
Ben-Tzvi
,
P.
, and
Danoff
,
J.
,
2015
, “
Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
(in press).
28.
Marin
,
J.-M.
,
Mengersen
,
K.
, and
Robert
,
C. P.
,
2005
, “
Bayesian Modelling and Inference on Mixtures of Distributions
,”
Handbook of Statistics 25
,
Elsevier
, Amsterdam, pp.
459
507
.
29.
Tomasi
,
G.
,
van den Berg
,
F.
, and
Anderson
,
C. A.
,
2004
, “
Correlation Optimized Warping and Dynamic Time Warping as Preprocessing Methods for Chromatographic Data
,”
J. Chemom.
,
18
(
5
), pp.
231
241
.
30.
Ren
,
Y.
,
Park
,
H. S.
, and
Zhang
,
L. Q.
,
2009
, “
Developing a Whole-Arm Exoskeleton Robot With Hand Opening and Closing Mechanism for Upper Limb Stroke Rehabilitation
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR 2009
), Kyoto, Japan, June 23–26, pp. 761–765.
31.
Burdea
,
G.
, and
Coiffet
,
P.
,
2003
,
Virtual Reality Technology
, 2nd ed.,
Wiley
,
New York
.
32.
Ohashi
,
T.
,
Szemes
,
P.
,
Korondi
,
P.
, and
Hashimoto
,
H.
,
1999
, “
Nonlinear Disturbance Compensation for Haptic Device
,”
IEEE International Symposium on Industrial Electronics
(
ISIE '99
), Bled, Slovenia, July 12–16, pp. 304–309.
You do not currently have access to this content.