This paper develops an approach to evaluate a state-space controller design for mobile manipulators using a geometric representation of the system response in tool space. The method evaluates the robot system dynamics with a control scheme and the resulting response is called the controllability ellipsoid (CE), a tool space representation of the system’s motion response given a unit input. The CE can be compared with a corresponding geometric representation of the required motion task (called the motion polyhedron) and evaluated using a quantitative measure of the degree to which the task is satisfied. The traditional control design approach views the system response in the time domain. Alternatively, the proposed CE views the system response in the domain of the input variables. In order to complete the task, the CE must fully contain the motion polyhedron. The optimal robot arrangement would minimize the total area of the CE while fully containing the motion polyhedron. This is comparable to minimizing the power requirements of robot design when applying a uniform scale to all inputs. It will be shown that changing the control parameters changes the eccentricity and orientation of the CE, implying a preferred set of control parameters to minimize the design motor power. When viewed in the time domain, the control parameters can be selected to achieve desired stability and time response. When coupled with existing control design methods, the CE approach can yield robot designs that are stable, responsive, and minimize the input power requirements.

References

1.
Lin
,
S.
, and
Goldenberg
,
A. A.
,
2001
, “
Neural Network Control of Mobile Manipulators
,”
IEEE Trans. Neural Networks
,
12
(
5
), pp.
1121
1133
.
2.
Caprari
,
G.
,
Breitenmoser
,
A.
,
Fischer
,
W.
,
Hurzeler
,
C.
,
Tache
,
F.
,
Siegwart
,
R.
,
Nguyen
,
O.
,
Moser
,
R.
,
Schoeneigh
,
P.
, and
Mondada
,
F.
,
2012
, “
Highly Compact Robots for Inspection of Power Plants
,”
J. Field Rob.
,
29
(
1
), pp.
47
68
.
3.
Lee
,
D.
,
Ju
,
N.
,
Kim
,
T. W.
,
Kim
,
J.
,
Lee
,
K. Y.
, and
Son
,
S. Y.
,
2011
, “
Development and Application of an Intelligent Welding Robot System for Shipbuilding
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
377
388
.
4.
Ngo
,
M. D.
,
Phuong
,
N. T.
,
Duy
,
V. H.
,
Kim
,
H. K.
, and
Kim
,
S. B.
,
2007
, “
Control of Two Wheeled Welding Mobile Manipulator
,”
Int. J. Adv. Rob. Syst.
,
4
(
3
), pp.
293
302
.
5.
Canfield
,
S. L.
,
Qualls
,
J.
, and
Shibakov
,
A.
,
2014
, “
Kinematic and Dynamic Evaluation of Mobile Robots Performing Welding Tasks
,”
ASME
Paper No. DETC2014-35109.
6.
Liu
,
K.
, and
Lewis
,
F. L.
,
1990
, “
Decentralized Continuous Robust Controller for Mobile Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
), Cincinnati, OH, May 13–18, pp. 1822–1827.
7.
Chung
,
J.
,
Velinsky
,
S.
, and
Hess
,
R.
,
1998
, “
Interaction Control of a Redundant Mobile Manipulator
,”
Int. J. Rob. Res.
,
17
(
12
), pp.
1302
1309
.
8.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
9.
Minami
,
M.
,
Li
,
X.
,
Matsuno
,
T.
, and
Yanou
,
A.
,
2016
, “
Dynamic Reconfiguration Manipulability for Redundant Manipulators
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061004
.
10.
Choset
,
H.
,
Shammas
,
E. A.
, and
Rizzi
,
A. A.
,
2007
, “
Geometric Motion Planning Analysis for Two Classes of Underactuated Mechanical Systems
,”
Int. J. Rob. Res.
,
26
(
10
), pp.
1043
1073
.
11.
Canfield
,
S. L.
,
Langley
,
D.
, and
Shibakov
,
A.
,
2013
, “
Developing Metrics for Comparison of Mobile Robots Performing Welding Tasks
,”
ASME
Paper No. DETC2013-13672.
12.
Bayle
,
B.
,
Fourquet
,
J. Y.
, and
Renaud
,
M.
,
2003
, “
Manipulability of Wheeled Mobile Manipulators: Application to Motion Generation
,”
Int. J. Rob. Res.
,
22
(
7–8
), pp.
565
581
.
13.
Gardner
,
J. F.
, and
Velinsky
,
S. A.
,
2000
, “
Kinematics of Mobile Manipulators and Implications for Design
,”
J. Rob. Syst.
,
17
(
6
), pp.
309
320
.
14.
Yamamoto
,
Y.
, and
Fukuda
,
S.
,
2002
, “
Trajectory Planning of Multiple Mobile Manipulators With Collision Avoidance Capability
,” IEEE International Conference on Robotics and Automation (
ICRA
), Washington, DC, May 11–15, pp. 3365–3570.
15.
Tcho
ń,
K.
, and
Zadarnowska
,
A. K.
,
2003
, “
Kinematic Dexterity of Mobile Manipulators: An Endogenous Configuration Space Approach
,”
Robotica
,
21
(
5
), pp.
521
530
.
16.
Zadarnowska
,
K.
, and
Tchoń
,
K.
,
2007
, “
A Control Theory Framework for Performance Evaluation of Mobile Manipulators
,”
Robotica
,
25
(
6
), pp.
703
715
.
17.
Ryu
,
J.
, and
Agrawal
,
S.
,
2010
, “
Differential Flatness-Based Robust Control of Mobile Robots in the Presence of Slip
,”
Int. J. Rob. Res.
,
30
(
4
), pp.
463
475
.
18.
Jeffus
,
L.
,
2017
,
Welding: Principles and Applications
, 8th ed.,
Cengage Learning
,
Boston, MA
.
19.
O’Toole
,
A. T.
, and
Canfield
,
S. L.
,
2010
, “
Developing a Kinematic Estimation Model for a Climbing Mobile Robotic Welding System
,”
ASME
Paper No. DETC2010-28878.
20.
Hill
,
T. W.
,
2013
, “Development and Experimental Validation of the Kinematic and Dynamic Modeling of a Tracked Skid Steer Mobile Robot,”
ProQuest LLC
,
Cookeville, TN
.
21.
Matlab,
2016
, “
MATLAB, Version 9.0
,” The Mathworks, Inc., Natick, MA.
22.
Hendricks
,
E.
,
Jannerup
,
O.
, and
Sorensen
,
P. H.
,
2008
,
Linear Systems Control: Deterministic and Stochastic Methods
,
Springer-Verlag
,
Berlin
.
23.
Dorf
,
R. C.
, and
Bishop
,
R. H.
,
2011
,
Modern Control Systems
, Vol.
12
,
Pearson Education
,
Upper Saddle River, NJ
.
24.
University of Michigan
,
2014
, “
Introduction: State-Space Methods for Controller Design
,” The University of Michigan, Ann Arbor, MI, accessed Feb. 1, 2016, http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlStateSpace
You do not currently have access to this content.