Abstract

The advantage of handheld type surgical microscope is that the size of the probe is small and light, and that both the working distance (15–30 cm) and field of view (30 deg) can be adjusted. The shortness working distance will minimize the loss of light source energy. However, the currently developed handheld type surgical microscope is still large, heavy, and uses relatively high energy (600 mW/cm2). To address the aforementioned problems, this study aimed to develop a pen-type surgical fluorescence microscope that is compact, portable, and has an adjustable beam angle and working distance. These features enable real-time diagnosis. The pen-type probe consists of a laser diode, CMOS camera, light source brightness control device, filter, and power switch. The IR-cut filter inside the CMOS camera was removed to facilitate transmission of the fluorescence emission wavelength. In addition, a long-pass filter was attached to the camera so that the external light source was blocked and only the fluorescence emission wavelength was allowed to pass through. The performance of the pen-type probe was tested through a large animal experiment. Indocyanine green (2.5 mg/kg) was injected into a pig's vein. Fluorescence emission of 805-830 nm was achieved by irradiating an external light source (785 nm and 4 mW/cm2), and liver-uptake occurred after 2.4 min. The designed pen-type probe was capable of sufficiently fluorescence expression through low-energy irradiation, and the pen-type probe is small and light and easy to handle by hand because both the pen-based laser device and the camera device are integrated. In addition, it is easy to adjust the working distance and field of view.

References

1.
Lefranc
,
F.
,
Sadeghi
,
N.
,
Camby
,
I.
,
Metens
,
T.
,
Dewitte
,
O.
, and
Kiss
,
R.
,
2006
, “
Present and Potential Future Issues in Glioblastoma Treatment
,”
Expert Rev. Anticancer Ther.
,
6
(
5
), pp.
719
32
.10.1586/14737140.6.5.719
2.
Stummer
,
W.
,
Novotny
,
A.
,
Stepp
,
H.
,
Goetz
,
C.
,
Bise
,
K.
, and
Reulen
,
H. J.
,
2000
, “
Fluorescence-Guided Resection of Glioblastoma Muliforme Utilizing 5-ALA-Induced Porphyrins: A Prospective Study in Consecutive Patients
,”
J. Neurosurg.
,
93
(
6
), pp.
1003
1013
.10.3171/jns.2000.93.6.1003
3.
Pitskhelauri
,
D. I.
,
Konovalov
,
A. N.
,
Shekutev
,
G. A.
,
Rojnin
,
N. B.
,
Kachkov
,
I. A.
,
Samborskiy
,
D. Y.
,
Sanikidze
,
A. Z.
, and
Kopachev
,
D. N.
,
2014
, “
A Novel Device for Hands-Free Positioning and Adjustment of the Surgical Microscope
,”
J. Neurosurg.
,
121
(
1
), pp.
161
164
.10.3171/2014.3.JNS12578
4.
Duprée
,
A.
,
Rieß
,
H.
,
Detter
,
C.
,
Debus
,
E. S.
, and
Wipper
,
S. H.
,
2018
, “
Utilization of Indocynanine Green Fluorescent Imaging (ICG-FI) for the Assessment of Microperfusion in Vascular Medicine
,”
Innov. Surg. Sci.
,
3
(
3
), pp.
193
201
.10.1515/iss-2018-0014
5.
DSouza
,
A. V.
,
Lin
,
H.
,
Henderson
,
E. R.
,
Samkoe
,
K. S.
, and
Pogue
,
B. W.
,
2016
, “
Review of Fluorescence Guided Surgery Systems: Identification of Key Performance Capabilities Beyond Indocyanine Green Imaging
,”
J. Biomed. Opt.
,
21
(
8
), p.
080901
.10.1117/1.JBO.21.8.080901
6.
Unno
,
N.
,
Suzuki
,
M.
,
Yamamoto
,
N.
,
Inuzuka
,
K.
,
Sagara
,
D.
,
Nishiyama
,
M.
,
Tanaka
,
H.
, and
Konno
,
H.
,
2008
, “
Indocyanine Green Fluorescence Angiography for Intraoperative Assessment of Blood Flow: A Feasibility Study
,”
Eur. J. Vasc. Endovasc. Surg.
,
35
(
2
), pp.
205
207
.10.1016/j.ejvs.2007.09.001
7.
Desmettre
,
T.
,
Devoisselle
,
J. M.
, and
Mordon
,
S.
,
2000
, “
Fluorescence Properties and Metabolic Features of Indocyanine Green (ICG) as Related to Angiography
,”
Elsevier Sci.
,
45
(
1
), pp.
15
27
.10.1016/S0039-6257(00)00123-5
8.
Qi
,
B.
,
Crawford
,
A. J.
,
Wojtynek
,
N. E.
,
Holmes
,
M. B.
,
Souchek
,
J. J.
,
Almeida-Porada
,
G.
,
Ly
,
Q. P.
,
Cohen
,
S. M.
,
Hollingsworth
,
M. A.
, and
Mohs
,
A. M.
,
2018
, “
Indocyanine Green Loaded Hyaluronan-Derived Nanoparticles for Fluorescence-Enhanced Surgical Imaging of Pancreatic Cancer
,”
Nanomed.: Nanotechnol., Biol., Med.
,
14
(
3
), pp.
769
780
.10.1016/j.nano.2017.12.015
9.
Son
,
G. M.
,
Kwon
,
M. S.
,
Kim
,
Y.
,
Kim
,
J.
,
Kim
,
S. H.
, and
Lee
,
J. W.
,
2019
, “
Quantitative Analysis of Colon Perfusion Pattern Using Indocyanine Green (ICG) Angiography in Laparoscopic Colorectal Surgery
,”
Surg. Endosc.
,
33
(
5
), pp.
1640
1649
.10.1007/s00464-018-6439-y
10.
Delong
,
J. C.
,
Ward
,
E. P.
,
Lwin
,
T. M.
,
Brumund
,
K. T.
,
Kelly
,
K. J.
,
Horgan
,
S.
, and
Bouvet
,
M.
,
2018
, “
Indocyanine Green Fluorescence-Guided Parathyroidectomy for Primary Hyperparathyroidism
,”
Surgery
,
163
(
2
), pp.
388
392
.10.1016/j.surg.2017.08.018
11.
Hong
,
N. Y.
,
Kim
,
H. R.
,
Lee
,
H. M.
,
Sohn
,
D. K.
, and
Kim
,
K. G.
,
2016
, “
Fluorescent Property of Indocyanine Green (ICG) Rubber Ring Using LED and Laser Light Sources
,”
Biomed. Opt. Express
,
7
(
5
), pp.
1637
1644
.10.1364/BOE.7.001637
12.
Alander
,
J. T.
,
Kaartinen
,
I.
,
Laakso
,
A.
,
Patila
,
T.
,
Spillmann
,
T.
,
Tuchin
,
V. V.
,
Venermo
,
M.
, and
Välisuo
,
P.
,
2012
, “
A Review of Indocyanine Green Fluorescent Imaging in Surgery
,”
Hindawi Int. J. Biomed. Imag.
,
2012
(
2012
), pp.
1
26
.10.1155/2012/940585
13.
Stewart, H. L., and Birch, D. J. S., 2021, “Fluorescence Guided Surgery,”
Methods Appl. Fluoresc.
, 9(042002), pp. 1–26.10.1088/2050-6120/ac1dbb
14.
Watson
,
J. R.
,
Gainer
,
C. F.
,
Martirosyan
,
N.
,
Skoch
,
J.
,
Michael Lemole
,
G.
,
Anton
,
R.
, and
Romanowski
,
M.
,
2015
, “
Augmented Microscopy: Real-Time Overlay of Bright-Field and Near-Infrared Fluorescence Images
,”
J. Biomed. Opt.
,
20
(
10
), p.
106002
.10.1117/1.JBO.20.10.106002
15.
Wen
,
C. T.
,
Liu
,
Y. Y.
,
Fang
,
H. Y.
,
Hsieh
,
M. J.
, and
Chao
,
Y. K.
,
2018
, “
Image-Guided Video-Assisted Thoracoscopic Small Lung Tumor Resection Using Near-Infrared Marking
,”
Springer Surg. Endosc.
,
32
(
11
), pp.
4673
4680
.10.1007/s00464-018-6252-7
16.
Que
,
S. K. T.
,
Grant-Kels
,
J. M.
,
Rabinovitz
,
H. S.
,
Oliviero
,
M.
, and
Scope
,
A.
,
2016
, “
Application of Handheld Confocal Microscopy for Skin Cancer Diagnosis Advantages and Limitations Compared With the Wide-Probe Confocal
,”
Dermatol. Clin.
,
34
(
4
), pp.
469
475
.10.1016/j.det.2016.05.009
17.
Horgan
,
C. C.
,
Bergholt
,
M. S.
,
Thin
,
M. Z.
,
Nagelkerke
,
A.
,
Kennedy
,
R.
,
Kalber
,
T. L.
,
Stuckey
,
D. J.
, and
Stevens
,
M. M.
,
2021
, “
Image-Guided Raman Spectroscopy Probe-Tracking for Tumor Margin Delineation
,”
J. Biomed. Opt.
,
26
(
3
), p. 036002.10.1117/1.JBO.26.3.036002
18.
Sajedi
,
S.
,
Sabet
,
H.
, and
Choi
,
H. S.
,
2018
, “
Intraoperative Biophotonic Imaging Systems for Image-Guided Interventions
,”
Nanophotonics
,
8
(
1
), pp.
99
116
.10.1515/nanoph-2018-0134
19.
Dayani
,
P. N.
,
Maldonado
,
R.
,
Farsiu
,
S.
, and
Toth
,
C. A.
,
2009
, “
Intraoperative Use of Handheld Spectral Domain Optical Coherence Tomography Imaging in Macular Surgery
,”
Retina
,
29
(
10
), pp.
1457
1468
.10.1097/IAE.0b013e3181b266bc
20.
Kim
,
D.
,
Hwang
,
K.
,
Ahn
,
J.
,
Seo
,
Y.
,
Kim
,
J.
,
Lee
,
S.
,
Yoon
,
J.
,
Kong
,
E.
,
Jeong
,
Y.
,
Jon
,
S.
,
Kim
,
P.
, and
Jeong
,
K.
,
2019
, “
Lissajous Scanning Two-Photon Endomicroscope for In Vivo Tissue Imaging
,”
Sci. Rep.
,
9
(
1
), pp.
1
8
.10.1038/s41598-019-38762-w
21.
Hiroshima
,
Y.
,
Maawy
,
A.
,
Sato
,
S.
,
Murakami
,
T.
,
Uehara
,
F.
,
Miwa
,
S.
,
Yano
,
S.
,
Momiyama
,
M.
,
Chishima
,
T.
,
Tanaka
,
K.
,
Bouvet
,
M.
,
Endo
,
I.
, and
Hoffman
,
R. M.
,
2014
, “
Hand-Held High-Resolution Fluorescence Imaging System for Fluorescence-Guided Surgery of Patient and Cell-Line Pancreatic Tumors Growing Orthotopically in Nude Mice
,”
J. Surg. Res.
,
187
(
2
), pp.
510
517
.10.1016/j.jss.2013.11.1083
22.
Ma
,
L.
, and
Li
,
B.
,
2021
, “
Comprehensive Review of Surgical Microscopes: Technology Development and Medical Applications
,”
J. Biomed. Opt.
,
26
(
1
), p.
010901
.10.1117/1.JBO.26.1.010901
23.
Hoerenz
,
P.
,
1980
, “
The Operating Microscope I. Optical Principles Illumination Systems, and Support Systems
,”
J. Microsurg.
,
1
(
5
), pp.
364
369
.10.1002/micr.1920010506
24.
Klein
,
G.
,
Baumgartner
,
R.
, and
Flower
,
R.
,
1990
, “
An Image Processing Approach to Characterizing Choroidal Blood Flow
,”
Investig. Ophthalmol. Vis. Sci.
,
31
(
4
), pp.
629
637
.https://pubmed.ncbi.nlm.nih.gov/2335432/
25.
Themelis
,
G.
,
Yoo
,
J. S.
,
Soh
,
K. S.
,
Schulz
,
R.
, and
Ntziachristos
,
V.
,
2009
, “
Real-Time Intraoperative Fluorescence Imaging System Using Light-Absorption Correction
,”
J. Biomed. Opt.
,
14
(
6
), pp.
064012
064019
.10.1117/1.3259362
26.
Hauser
,
C.
,
Rück
,
A.
,
Lorenz
,
S.
,
Mosch
,
S.
,
Rotte
,
S.
,
Kessler
,
M.
, and
Kalinina
,
S.
,
2013
, “
Cell Metabolism, Tumour Diagnosis and Multispectral FLIM
,”
SPIE BiOS, Int. Society for Optics and Photonics,
San Francisco, CA, Feb. 2–7.10.1117/12.2003729
27.
Cherrick
,
G. R.
,
Stein
,
S. W.
,
Leevy
,
C. M.
, and
Davidson
,
C. S.
,
1960
, “
Indocyanine Green: Observation on Its Physical Properties, Plasma Decay and Hepatic Extraction
,”
J. Clin Invest
,.,
39
(
4
), pp.
592
600
.10.1172/JCI104072
28.
Miwa
,
M.
,
2010
, “
The Principle of ICG Fluorescence Method
,”
Open Surg. Oncol. J.
,
2
(
2
), pp.
26
28
.10.2174/1876504101002020026
29.
Hope-Ross
,
M.
,
Yannuzzi
,
L. A.
,
Gragoudas
,
E. S.
,
Guyer
,
D. R.
,
Slakter
,
J. S.
,
Sorenson
,
J. A.
,
Krupsky
,
S.
,
Orlock
,
D. A.
, and
Puliafito
,
C. A.
,
1994
, “
Adverse Reactions Due to Indocyanine Green
,”
Ophthalmology
,
101
(
3
), pp.
529
533
.10.1016/S0161-6420(94)31303-0
30.
Hirche
,
C.
,
Engel
,
H.
,
Kolio
,
L.
,
Cognie
,
J.
,
Hünerbein
,
M.
,
Lehnhardt
,
M.
, and
Kremer
,
T.
,
2013
, “
An Experimental Study to Evaluate the Fluobeam 800 Imaging System for Fluorescence-Guided Lymphatic Imaging and Sentinel Node Biopsy
,”
Surg. Innov.
,
20
(
5
), pp.
516
523
.10.1177/1553350612468962
31.
Eker
,
C.
,
Montan
,
S.
,
Jaramillo
,
E.
,
Koizumi
,
K.
,
Rubio
,
C.
,
Andersson-Engels
,
S.
,
Svanberg
,
K.
,
Svanberg
,
S.
, and
Slezak
,
P.
,
1999
, “
Clinical Spectral Characterisation of Colonic Mucosal Lesions Using Autofluorescence and δ Aminolevulinic Acid Sensitization
,”
Gut
,
44
(
4
), pp.
511
518
.10.1136/gut.44.4.511
32.
Georges
,
J. F.
,
Valeri
,
A.
,
Wang
,
H.
,
Brooking
,
A.
,
Kakareka
,
M.
,
Cho
,
S. S.
,
Al-Atrache
,
Z.
,
Bamimore
,
M.
,
Osman
,
H.
,
Ifrach
,
J.
,
Yu
,
S.
,
Li
,
C.
,
Appelt
,
D.
,
Lee
,
J. Y. K.
,
Nakaji
,
P.
,
Brill
,
K.
, and
Yocom
,
S.
,
2019
, “
Delta-Aminolevulinic Acid-Mediated Photodiagnoses in Surgical Oncology: A Historical Review of Clinical Trials
,”
Front. Surg.
,
6
, pp.
1
16
.10.3389/fsurg.2019.00045
33.
Yoon
,
K. C.
,
Kim
,
E. J.
,
Kim
,
K. G.
, and
Lee
,
S. H.
,
2019
, “
A Multi-Detection Microscope With 5-ALA and ICG Using Dual Array LED
,”
Curr. Opt. Photonics
,
3
(
3
), pp.
256
262
.10.3807/COPP.2019.3.3.256
34.
Hoerenz
,
P.
,
1980
, “
The Operating Microscope II. Individual Parts, Handling, Assembling, Focusing, and Balancing
,”
J. Microsurg.
,
1
(
6
), pp.
419
427
.10.1002/micr.1920010603
35.
Lee
,
J.
,
Wijesinghe
,
R. E.
,
Jeon
,
D.
,
Kim
,
P.
,
Choung
,
Y.-H.
,
Jang
,
J. H.
,
Jeon
,
M.
, and
Kim
,
J.
,
2018
, “
Clinical Utility of Intraoperative Tympanomastoidectomy Assessment Using a Surgical Microscope Integrated With an Optical Coherence Tomography
,”
Sci. Rep.
,
8
(
1
), pp.
1
8
.10.1038/s41598-018-35563-5
36.
Ricci
,
F.
,
Missiroli
,
F.
, and
Cerulli
,
L.
,
2004
, “
Indocyanine Green Dye Enhanced Micro Pulsed Diode Laser: A Novel Approach to Subthreshold RPE Treatment in a Case of Central Serous Chorioretinopathy
,”
Eur. J. Ophthalmol.
,
14
(
1
), pp.
74
82
.10.1177/112067210401400115
37.
Marshall
,
M. V.
,
Rasmussen
,
J. C.
,
Tan
,
I. C.
,
Aldrich
,
M. B.
,
Adams
,
K. E.
,
Wang
,
X.
,
Fife
,
C. E.
,
Maus
,
E. A.
,
Smith
,
L. A.
, and
Sevick-Muraca
,
E. M.
,
2010
, “
Near-Infrared Fluorescence Imaging in Humans With Indocyanine Green: A Review and Update
,”
Open Surg. Oncol. J.
,
2
(
1
), pp.
12
25
.10.2174/1876504101002010012
38.
Themelis
,
G.
,
Yoo
,
J. S.
, and
Ntziachristos
,
V.
,
2008
, “
Multispectral Imaging Using Multiple-Bandpass Filters
,”
Opt. Lett
,.,
33
(
9
), pp.
1023
1025
.10.1364/OL.33.001023
39.
Kondo
,
Y.
,
Murayama
,
Y.
,
Konishi
,
H.
,
Morimura
,
R. Y. O.
,
Komatsu
,
S.
,
Shiozaki
,
A.
,
Kuriu
,
Y.
,
Ikoma
,
H.
,
Kubota
,
T.
,
Nakanishi
,
M.
,
Ichikawa
,
D.
,
Fujiwara
,
H.
,
Okamoto
,
K.
,
Sakakura
,
C.
,
Takahashi
,
K.
,
Inoue
,
K.
,
Nakajima
,
M.
, and
Otsuji
,
E.
,
2014
, “
Fluorescent Detection of Peritoneal Metastasis in Human Colorectal Cancer Using 5-Aminolevulinic Acid
,”
Int. J. Oncol.
,
45
(
1
), pp.
41
46
.10.3892/ijo.2014.2417
You do not currently have access to this content.