Abstract

Objective: During shoulder arthroplasty, surgeons must select the optimal implant for each patient. The metaphyseal bone properties affect this decision; however, the typical resection “thumb test” lacks objectivity. This investigation's purposes were to determine the correlation strength between the indentation depth of a handheld mechanism and the density, compressive strength, and modulus of a bone surrogate; as well as to assess how changing the indenter tip shape and impact energy may affect the correlation strengths. Methods: A spring-loaded indenter was developed. Four tip shapes (needle, tapered, flat, and radiused cylinders) and four spring energies (0.13 J–0.76J) were assessed by indenting five cellular foam bone surrogates of varying density, every five times. After each indentation, the indentation depth was measured with a separate probe and correlated with manufacturer specifications of the apparent density, compressive strength, and modulus. Results: indentation depth plateaued as the bone surrogate's material properties increased, particularly for indentation tips with larger footprints and the 0.13 J spring. All tip shapes produced strong (R2≥0.7) power-law relationships between the indentation depth metric and the bone surrogate's material properties (density: 0.70 ≤ R2 ≤ 0.95, strength: 0.75 ≤ R2 ≤ 0.97, modulus: 0.70 ≤ R2 ≤ 0.93); though the use of the needle tip yielded the widest indentation depth scale. Interpretation: these strong correlations suggest that a handheld indenter may provide objective intra-operative evidence of cancellous material properties. Further investigations are warranted to study indenter tip shape and spring energy in human tissue; though the needle tip with spring energy between 0.30 J and 0.76 J seems the most promising.

References

1.
Lübbeke
,
A.
,
Rees
,
J. L.
,
Barea
,
C.
,
Combescure
,
C.
,
Carr
,
A. J.
, and
Silman
,
A. J.
,
2017
, “
International Variation in Shoulder Arthroplasty: Incidence, Indication, Type of Procedure, and Outcomes Evaluation in 9 Countries
,”
Acta Orthop.
,
88
(
6
), pp.
592
599
.10.1080/17453674.2017.1368884
2.
Kim
,
S. H.
,
Wise
,
B. L.
,
Zhang
,
Y.
, and
Szabo
,
R. M.
,
2011
, “
Increasing Incidence of Shoulder Arthroplasty in the United States
,”
J. Bone Jt. Surg.
,
93
, pp.
2249
2254
.10.2106/JBJS.J.01994
3.
Schairer
,
W. W.
,
Nwachukwu
,
B. U.
,
Lyman
,
S.
,
Craig
,
E. V.
, and
Gulotta
,
L. V.
,
2015
, “
National Utilization of Reverse Total Shoulder Arthroplasty in the United States
,”
J. Shoulder Elb. Surg.
,
24
(
1
), pp.
91
97
.10.1016/j.jse.2014.08.026
4.
Farley
,
K. X.
,
Wilson
,
J. M.
,
Daly
,
C. A.
,
Gottschalk
,
M. B.
, and
Wagner
,
E. R.
,
2019
, “
The Incidence of Shoulder Arthroplasty: Rise and Future Projections Compared to Hip and Knee Arthroplasty
,”
JSES Open Access
,
3
(
4
), p.
244
.10.1016/j.jses.2019.10.047
5.
Neer
,
C. S.
,
1955
, “
Articular Replacement for the Humeral Head
,”
J. Bone Jt. Surg.
,
37
(
2
), pp.
215
228
.10.2106/00004623-195537020-00001
6.
Churchill
,
R. S.
, and
Athwal
,
G. S.
,
2016
, “
Stemless Shoulder Arthroplasty—Current Results and Designs
,”
Curr. Rev. Musculoskelet. Med.
,
9
(
1
), pp.
10
16
.10.1007/s12178-016-9320-4
7.
Bohsali
,
K. I.
,
Wirth
,
M. A.
, and
Rockwood
,
C. A. J.
,
2006
, “
Complications of Total Shoulder Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
88
(
10
), pp.
2279
2292
.10.2106/JBJS.F.00125
8.
Bohsali
,
K. I.
,
Bois
,
A. J.
, and
Wirth
,
M. A.
,
2017
, “
Complications of Shoulder Arthroplasty
,”
J. Bone Jt. Surg. Am.
,
99
(
3
), pp.
256
269
.10.2106/JBJS.16.00935
9.
Hasan
,
S. S.
,
Leith
,
J. M.
,
Campbell
,
B.
,
Kapil
,
R.
,
Smith
,
K. L.
, and
Matsen
,
F. A.
,
2002
, “
Characteristics of Unsatisfactory Shoulder Arthroplasties
,”
J. Shoulder Elb. Surg.
,
11
(
5
), pp.
431
441
.10.1067/mse.2002.125806
10.
Ivanoff
,
C. J.
,
Sennerby
,
L.
, and
Lekholm
,
U.
,
1996
, “
Influence of Mono- and Bicortical Anchorage on the Integration of Titanium Implants: A Study in the Rabbit Tibia
,”
Int. J. Oral Maxillofac. Surg.
,
25
(
3
), pp.
229
235
.10.1016/S0901-5027(96)80036-1
11.
Sychterz
,
C. J.
, and
Engh
,
C. A.
,
1996
, “
The Influence of Clinical Factors on Periprosthetic Bone Remodeling
,”
Clin. Orthop. Relat. Res.
, 322, pp.
285
292
. 10.1097/00003086-199601000-00034
12.
Bauer
,
T. W.
, and
Schils
,
J.
,
1999
, “
The Pathology of Total Joint Arthroplasty II. Mechanisms of Implant Failure
,”
Skeletal Radiol.
,
28
(
9
), pp.
483
497
.10.1007/s002560050552
13.
Kerner
,
J.
,
Huiskes
,
R.
,
van Lenthe
,
G.
,
Weinans
,
H.
,
van Rietbergen
,
B.
,
Engh
,
C.
, and
Amis
,
A.
,
1999
, “
Correlation Between Pre-Operative Periprosthetic Bone Density and Post-Operative Bone Loss in THA Can Be Explained by Strain-Adaptive Remodelling
,”
J. Biomech.
,
32
(
7
), pp.
695
703
.10.1016/S0021-9290(99)00041-X
14.
Engh
,
C.
, and
McGovern
,
T.
,
1992
, “
A Quantitative Evaluation of Periprosthetic Bone-Remodeling After Cementless Total Hip Arthroplasty
,”
J. Bone Jt. Surg.
,
74
(
7
), pp.
1009
1020
.10.2106/00004623-199274070-00007
15.
Tulner
,
S. A. F.
,
Zdravkovic
,
V.
,
Külling
,
F.
,
Jost
,
B.
, and
Puskas
,
G. J.
,
2017
, “
Haptic Assessment of Bone Quality in Orthopedic Surgery: No Consensus but Perspective for High Training Potential
,”
Int. J. Med. Educ.
,
8
, pp.
437
438
.10.5116/ijme.5a38.168c
16.
Arnold
,
M.
,
Zhao
,
S.
,
Ma
,
S.
,
Giuliani
,
F.
,
Hansen
,
U.
,
Cob
,
J. P.
,
Abel
,
R. L.
, and
Boughton
,
O.
,
2017
, “
Microindentation - A Tool for Measuring Cortical Bone Stiffness? A Systematic Review
,”
Bone Jt. Res.
,
6
(
9
), pp.
542
549
.10.1302/2046-3758.69.BJR-2016-0317.R2
17.
Bridges
,
D.
,
Randall
,
C.
, and
Hansma
,
P. K.
,
2012
, “
A New Device for Performing Reference Point Indentation Without a Reference Probe
,”
Rev. Sci. Instrum.
,
83
(
4
), p. 044301.10.1063/1.3693085
18.
Abraham
,
A. C.
,
Agarwalla
,
A.
,
Yadavalli
,
A.
,
Liu
,
J. Y.
, and
Tang
,
S. Y.
,
2016
, “
Microstructural and Compositional Contributions Towards the Mechanical Behavior of Aging Human Bone Measured by Cyclic and Impact Reference Point Indentation
,”
Bone
,
87
, pp.
37
43
.10.1016/j.bone.2016.03.013
19.
Uppuganti
,
S.
,
Granke
,
M.
,
Manhard
,
M. K.
,
Does
,
M. D.
,
Perrien
,
D. S.
,
Lee
,
D. H.
, and
Nyman
,
J. S.
,
2017
, “
Differences in Sensitivity to Microstructure Between Cyclic- and Impact-Based Microindentation of Human Cortical Bone
,”
J. Orthop. Res.
,
35
(
7
), pp.
1442
1452
.10.1002/jor.23392
20.
Diez-Perez
,
A.
,
Bouxsein
,
M. L.
,
Eriksen
,
E. F.
,
Khosla
,
S.
,
Nyman
,
J. S.
,
Papapoulos
,
S.
, and
Tang
,
S. Y.
,
2016
, “
Technical Note: Recommendations for a Standard Procedure to Assess Cortical Bone at the Tissue-Level In Vivo Using Impact Microindentation
,”
Bone Rep.
,
5
(, pp.
181
185
.10.1016/j.bonr.2016.07.004
21.
Sneppen
,
O.
,
Christensen
,
P.
,
Larsen
,
H.
, and
Vang
,
P. S.
,
1982
, “
Mechanical Testing of Trabecular Bone in Knee Replacement - Development of an Osteopenetrometer
,”
Int. Orthop.
,
5
(
4
), pp.
251
256
.10.1007/BF00271079
22.
Hvid
,
I.
,
Christensen
,
P.
,
Søndergaard
,
J.
,
Christensen
,
P. B.
, and
Larsen
,
C. G.
,
1983
, “
Compressive Strength of Tibial Cancellous Bone: Instron® and Osteopenetrometer Measurements in an Autopsy Material
,”
Acta Orthop.
,
54
(
6
), pp.
819
825
.10.3109/17453678308992915
23.
Hoppe
,
S.
,
Uhlmann
,
M.
,
Schwyn
,
R.
,
Suhm
,
N.
, and
Benneker
,
L. M.
,
2015
, “
Intraoperative Mechanical Measurement of Bone Quality With the DensiProbe
,”
J. Clin. Densitom.
,
18
(
1
), pp.
109
116
.10.1016/j.jocd.2014.06.002
24.
Mueller
,
M. A.
,
Hengg
,
C.
,
Hirschmann
,
M.
,
Schmid
,
D.
,
Sprecher
,
C.
,
Audigé
,
L.
, and
Suhm
,
N.
,
2012
, “
Mechanical Torque Measurement for In Vivo Quantification of Bone Strength in the Proximal Femur
,”
Injury
,
43
(
10
), pp.
1712
1717
.10.1016/j.injury.2012.06.014
25.
Suhm
,
N.
,
Haenni
,
M.
,
Schwyn
,
R.
,
Hirschmann
,
M.
, and
Müller
,
A. M.
,
2008
, “
Quantification of Bone Strength by Intraoperative Torque Measurement: A Technical Note
,”
Arch. Orthop. Trauma Surg.
,
128
(
6
), pp.
613
620
.10.1007/s00402-008-0566-1
26.
Suhm
,
N.
,
Hengg
,
C.
,
Schwyn
,
R.
,
Windolf
,
M.
,
Quarz
,
V.
, and
Hänni
,
M.
,
2007
, “
Mechanical Torque Measurement Predicts Load to Implant Cut-Out: A Biomechanical Study Investigating DHS® Anchorage in Femoral Heads
,”
Arch. Orthop. Trauma Surg.
,
127
(
6
), pp.
469
474
.10.1007/s00402-006-0265-8
27.
Reeves
,
J. M.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2018
, “
An Assessment of Proximal Humerus Density With Reference to Stemless Implants
,”
J. Shoulder Elb. Surg.
,
27
(
4
), pp.
641
649
.10.1016/j.jse.2017.09.019
28.
Reeves
,
J. M.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2018
, “
An Analysis of Proximal Humerus Morphology With Special Interest in Stemless Shoulder Arthroplasty
,”
J. Shoulder Elb. Surg.
,
27
(
4
), pp.
650
658
.10.1016/j.jse.2017.10.029
You do not currently have access to this content.