Abstract

Medical robots provide enhanced dexterity, vision, and safety for a broad range of procedures. In this article, we present a handheld, robotic device capable of performing peripheral catheter insertions with high accuracy and repeatability. The device utilizes a combination of ultrasound imaging, miniaturized robotics, and machine learning to safely and efficiently introduce a catheter sheath into a peripheral blood vessel. Here, we present the mechanical design and experimental validation of the device, known as VeniBot. Additionally, we present results on our ultrasound deep learning algorithm for vessel segmentation, and performance on tissue-mimicking phantom models that simulate difficult peripheral catheter placement. Overall, the device achieved first-attempt success rates of 97 ± 4% for vessel punctures and 89 ± 7% for sheath cannulations on the tissue mimicking models (n = 240). The results from these studies demonstrate the viability of a handheld device for performing semi-automated peripheral catheterization. In the future, the use of this device has the potential to improve clinical workflow and reduce patient discomfort by assuring a safe and efficient procedure.

References

1.
Shademan
,
A.
,
Decker
,
R. S.
,
Opfermann
,
J. D.
,
Leonard
,
S.
,
Krieger
,
A.
, and
Kim
,
P. C. W.
,
2016
, “
Supervised Autonomous Robotic Soft Tissue Surgery
,”
Sci. Transl. Med.
,
8
(
337
), p.
337ra64
.10.1126/scitranslmed.aad9398
2.
Moustris
,
G. P.
,
Hiridis
,
S. C.
,
Deliparaschos
,
K. M.
, and
Konstantinidis
,
K. M.
,
2011
, “
Evolution of Autonomous and Semi-Autonomous Robotic Surgical Systems: A Review of the Literature
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
7
(
4
), pp.
375
392
.10.1002/rcs.408
3.
Edwards
,
T. L.
,
Xue
,
K.
,
Meenink
,
H. C. M.
,
Beelen
,
M. J.
,
Naus
,
G. J. L.
,
Simunovic
,
M. P.
,
Latasiewicz
,
M.
,
Farmery
,
A. D.
,
de Smet
,
M. D.
, and
MacLaren
,
R. E.
,
2018
, “
First-in-Human Study of the Safety and Viability of Intraocular Robotic Surgery
,”
Nat. Biomed. Eng.
,
2
(
9
), pp.
649
656
.10.1038/s41551-018-0248-4
4.
Fagogenis
,
G.
,
Mencattelli
,
M.
,
Machaidze
,
Z.
,
Rosa
,
B.
,
Price
,
K.
,
Wu
,
F.
,
Weixler
,
V.
,
Saeed
,
M.
,
Mayer
,
J. E.
, and
Dupont
,
P. E.
,
2019
, “
Autonomous Robotic Intracardiac Catheter Navigation Using Haptic Vision
,”
Sci. Robot.
,
4
(
29
), p.
eaaw1977
.10.1126/scirobotics.aaw1977
5.
Daudelin
,
J.
,
Jing
,
G.
,
Tosun
,
T.
,
Yim
,
M.
,
Kress-Gazit
,
H.
, and
Campbell
,
M.
,
2018
, “
An Integrated System for Perception-Driven Autonomy With Modular Robots
,”
Sci. Robot.
,
3
(
23
), p.
31
.10.1126/scirobotics.aat4983
6.
Alexandrou
,
E.
,
Ray-Barruel
,
G.
,
Carr
,
P. J.
,
Frost
,
S.
,
Inwood
,
S.
,
Higgins
,
N.
,
Lin
,
F.
,
Alberto
,
L.
,
Mermel
,
L.
, and
Rickard
,
C. M.
,
2015
, “
International Prevalence of the Use of Peripheral Intravenous Catheters
,”
J. Hosp. Med.
,
10
(
8
), pp.
530
–53
3
.10.1002/jhm.2389
7.
National Center for Health Statistics, National Hospital Ambulatory Medical Care Survey
:
2016
Emergency Department Summary Tables, Report.
8.
Sampalis
,
J. S.
,
Lavoie
,
A.
,
Williams
,
J. I.
,
Mulder
,
D. S.
, and
Kalina
,
M.
,
1993
, “
Impact of on-Site Care, Prehospital Time, and Level of in-Hospital Care on Survival in Severely Injured Patients
,”
J. Trauma - Inj. Infect. Crit. Care
,
34
(
2
), p.
252
.10.1097/00005373-199302000-00014
9.
Parker
,
S. I. A.
,
Benzies
,
K. M.
, and
Hayden
,
K. A.
,
2017
, “
A Systematic Review: Effectiveness of Pediatric Peripheral Intravenous Catheterization Strategies
,”
J. Adv. Nurs
,.,
73
(
7
), pp.
1570
1582
.10.1111/jan.13211
10.
Armenteros-Yeguas
,
V.
,
Gárate-Echenique
,
L.
,
Tomás-López
,
M. A.
,
Cristóbal-Domínguez
,
E.
,
Moreno-de Gusmão
,
B.
,
Miranda-Serrano
,
E.
, and
Moraza-Dulanto
,
M. I.
,
2017
, “
Prevalence of Difficult Venous Access and Associated Risk Factors in Highly Complex Hospitalised Patients
,”
J. Clin. Nurs.
,
26
(
23–24
), pp.
4267
4275
.10.1111/jocn.13750
11.
Rauch
,
D.
,
Dowd
,
D.
,
Eldridge
,
D.
,
MacE
,
S.
,
Schears
,
G.
, and
Yen
,
K.
,
2009
, “
Peripheral Difficult Venous Access in Children
,”
Clin. Pediatr. (Phila).
,
48
(
9
), pp.
895
901
.10.1177/0009922809335737
12.
Walsh
,
G.
,
2008
, “
Difficult Peripheral Venous Access: Recognizing and Managing the Patient at Risk
,”
J. Assoc. Vasc. Access
,
13
(
4
), pp.
198
203
.10.2309/java.13-4-7
13.
Kuensting
,
L. L.
,
DeBoer
,
S.
,
Holleran
,
R.
,
Shultz
,
B. L.
,
Steinmann
,
R. A.
, and
Venella
,
J.
,
2009
, “
Difficult Venous Access in Children: Taking Control
,”
J. Emerg. Nurs.
,
35
(
5
), pp.
419
424
.10.1016/j.jen.2009.01.014
14.
Carr
,
P. J.
,
Rippey
,
J. C. R.
,
Cooke
,
M. L.
,
Trevenen
,
M. L.
,
Higgins
,
N. S.
,
Foale
,
A. S.
, and
Rickard
,
C. M.
,
2019
, “
Factors Associated With Peripheral Intravenous Cannulation First-Time Insertion Success in the Emergency Department. A Multicentre Prospective Cohort Analysis of Patient, Clinician and Product Characteristics
,”
BMJ Open
,
9
(
4
), p.
e022278
.10.1136/bmjopen-2018-022278
15.
Carr
,
P. J.
,
Rippey
,
J. C. R.
,
Budgeon
,
C. A.
,
Cooke
,
M. L.
,
Higgins
,
N.
, and
Rickard
,
C. M.
,
2016
, “
Insertion of Peripheral Intravenous Cannulae in the Emergency Department: Factors Associated With First-Time Insertion Success
,”
J. Vasc. Access.
,
17
(
2
), pp.
182
190
.10.5301/jva.5000487
16.
Lininger
,
R. A.
,
2003
, “
Pediatric Peripheral i.v. Insertion Success Rates
,”
Pediatr. Nurs.
,
29
(
5
), pp.
351
354
.https://pubmed.ncbi.nlm.nih.gov/14651305/
17.
Witting
,
M. D.
,
2012
, “
IV Access Difficulty: Incidence and Delays in an Urban Emergency Department
,”
J. Emerg. Med.
,
42
(
4
), pp.
483
487
.10.1016/j.jemermed.2011.07.030
18.
Miliani
,
K.
,
Taravella
,
R.
,
Thillard
,
D.
,
Chauvin
,
V.
,
Martin
,
E.
,
Edouard
,
S.
, and
Astagneau
,
P.
,
on behalf of the CATHEVAL Study Group
2017
, “
Peripheral Venous Catheter-Related Adverse Events: Evaluation From a Multicentre Epidemiological Study in France (the CATHEVAL Project)
,”
PLoS One
,
12
(
1
), p.
e0168637
.10.1371/journal.pone.0168637
19.
Lefrant
,
J.-Y.
,
Muller
,
L.
,
De La Coussaye
,
J.-E.
,
Prudhomme
,
M.
,
Ripart
,
J.
,
Gouzes
,
C.
,
Peray
,
P.
,
Saissi
,
G.
, and
Eledjam
,
J.-J.
,
2002
, “
Risk Factors of Failure and Immediate Complication of Subclavian Vein Catheterization in Critically Ill Patients
,”
Intensive Care Med.
,
28
(
8
), pp.
1036
1041
.10.1007/s00134-002-1364-9
20.
Eddins
,
J.
,
Horattas
,
C.
,
Trupiano
,
J.
,
Hopkins
,
S.
,
Pasini
,
D.
,
Martino
,
C.
, and
Murty
,
A.
,
2002
, “
Changing Concepts in Long-Term Central Venous Access: Catheter Selection and Cost Savings
,”
J. Vasc. Access Devices
,
7
(
1
), pp.
47
48
.10.1016/S1083-0081(02)70563-3
21.
Sou
,
V.
,
McManus
,
C.
,
Mifflin
,
N.
,
Frost
,
S. A.
,
Ale
,
J.
, and
Alexandrou
,
E.
,
2017
, “
A Clinical Pathway for the Management of Difficult Venous Access
,”
BMC Nurs.
,
16
(
1
), p.
64
.10.1186/s12912-017-0261-z
22.
Balter
,
M. L.
,
Leipheimer
,
J. M.
,
Chen
,
A. I.
,
Shrirao
,
A.
,
Maguire
,
T. J.
, and
Yarmush
,
M. L.
,
2018
, “
Automated End-to-End Blood Testing at the Point-of-Care: Integration of Robotic Phlebotomy With Downstream Sample Processing
,”
Technology
,
06
(
02
), pp.
59
66
.10.1142/S2339547818500048
23.
Chen
,
A. I.
,
Balter
,
M. L.
,
Maguire
,
T. J.
, and
Yarmush
,
M. L.
,
2020
, “
Deep Learning Robotic Guidance for Autonomous Vascular Access
,”
Nat. Mach. Intell.
,
2
(
2
), pp.
104
115
.10.1038/s42256-020-0148-7
24.
Balter
,
M. L.
,
Chen
,
A. I.
,
Fromholtz
,
A.
,
Gorshkov
,
A.
,
Maguire
,
T. J.
, and
Yarmush
,
M. L.
,
2016
, “
System Design and Development of a Robotic Device for Automated Venipuncture and Diagnostic Blood Cell Analysis
,”
IEEE International Conference on Intelligent Robots and Systems
, Daejeon, Korea, Oct. 9–14,
Institute of Electrical and Electronics Engineers Inc
., pp.
514
520
.10.1109/IROS.2016.7759102
25.
Balter
,
M. L.
,
Chen
,
A. I.
,
Maguire
,
T. J.
, and
Yarmush
,
M. L.
,
2017
, “
Adaptive Kinematic Control of a Robotic Venipuncture Device Based on Stereo Vision, Ultrasound, and Force Guidance
,”
IEEE Trans. Ind. Electron.
,
64
(
2
), pp.
1626
1635
.10.1109/TIE.2016.2557306
26.
Leipheimer
,
J. M.
,
Balter
,
M. L.
,
Chen
,
A. I.
,
Pantin
,
E. J.
,
Davidovich
,
A. E.
,
Labazzo
,
K. S.
, and
Yarmush
,
M. L.
,
2020
, “
First-in-Human Evaluation of a Hand-Held Automated Venipuncture Device for Rapid Venous Blood Draws
,”
Technology
, pp.
1
10
.10.1142/S2339547819500067
27.
Dhingra
,
N.
,
Diepart
,
M.
,
Dziekan
,
G.
,
Khamassi
,
S.
,
Otaiza
,
F.
, and
Wilburn
,
S.
,
2010
,
WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy
,
World Health Organization
,
Geneva
, Switzerland, pp.
1
105
.
28.
Mukai
,
K.
,
Nakajima
,
Y.
,
Nakano
,
T.
,
Okuhira
,
M.
,
Kasashima
,
A.
,
Hayashi
,
R.
,
Yamashita
,
M.
,
Urai
,
T.
, and
Nakatani
,
T.
,
2020
, “
Safety of Venipuncture Sites at the Cubital Fossa as Assessed by Ultrasonography
,”
J. Patient Saf.
,
16
(
1
), pp.
98
105
.10.1097/PTS.0000000000000441
29.
Smistad
,
E.
, and
Løvstakken
,
L.
,
2016
, “
Vessel Detection in Ultrasound Images Using Deep Convolutional Neural Networks
,”
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
,
Springer Verlag
, Berlin, pp.
30
38
.
30.
MICCAI, 2015,
Lecture Notes in Computer Science
, Vol. 9351, Springer, Cham, Berlin.
31.
Chen
,
A. I.
,
Balter
,
M. L.
,
Chen
,
M. I.
,
Gross
,
D.
,
Alam
,
S. K.
,
Maguire
,
T. J.
, and
Yarmush
,
M. L.
,
2016
, “
Multilayered Tissue Mimicking Skin and Vessel Phantoms With Tunable Mechanical, Optical, and Acoustic Properties
,”
Med. Phys.
,
43
(
6; Part 1
), pp.
3117
3131
.10.1118/1.4951729
You do not currently have access to this content.