Abstract

In natural orifice transluminal endoscopic surgery (NOTES), the flexible endoscopic surgical robot utilizes a continuum configuration to navigate narrow, multicurvature esophageal pathways. However, the tool channel's dimensional limitations and the restricted internal layout make it challenging to reduce the outside diameter and highly efficient variable stiffness function significantly. As a result, safe insertion into the esophagus and precise operation remains hugely challenging. In this paper, an esophageal sleeve with variable stiffness and internal diameter is developed for endoscopic procedures. The proposed esophageal sleeve adopts specially designed spiral elastic deployable parts that allow for variations in internal diameter. Furthermore, the elastic deployable parts are designed with serrated protrusion structures that can realize rapid transition between rigidity and flexibility under negative pressure. Fundamental experimental results showed that the outer diameter of the proposed esophageal sleeve can expand from 17 mm to 20 mm, providing inner access up to 13 mm for endoscopic instruments. The serrated protrusion structure allows the esophageal sleeve to rapidly transition from a flexible to a rigid state, resulting in a stiffness gain of approximately 5. Phantom experiments validated the effectiveness and usability of the proposed esophageal sleeve in assisting endoscope insertion, demonstrating its potential clinical value in endoscopic procedures. The significance of this study is the development of a device that can better assist endoscopic procedures.

References

1.
Ullah
,
S.
,
Ali
,
F. S.
, and
Liu
,
B.-R.
,
2021
, “
Advancing Flexible Endoscopy to Natural Orifice Transluminal Endoscopic Surgery
,”
Curr. Opin. Gastroenterol.
,
37
(
5
), pp.
470
477
.10.1097/MOG.0000000000000753
2.
Hu
,
Z.
,
Li
,
J.
, and
Wang
,
S.
,
2023
, “
Design and Kinematics of a Robotic Instrument for Natural Orifice Transluminal Endoscopic Surgery
,”
IEEE/ASME Trans. Mechatron.
,
28
(
5
), pp.
2840
2851
.10.1109/TMECH.2023.3249413
3.
Zhu
,
X.
, and
Hu
,
H.
,
2021
, “
A Controllable Stiffness Robotics for Natural Orifice Transluminal Endoscopic Surgery
,” 2021 Fourth World Conference on Mechanical Engineering and Intelligent Manufacturing (
WCMEIM
),
Shanghai, China,
Nov. 12–14, pp.
45
48
.10.1109/WCMEIM54377.2021.00018
4.
Hwang
,
M.
, and
Kwon
,
D.-S.
,
2019
, “
Strong Continuum Manipulator for Flexible Endoscopic Surgery
,”
IEEE/ASME Trans. Mechatron.
,
24
(
5
), pp.
2193
2203
.10.1109/TMECH.2019.2932378
5.
Ridha
,
A. P.
, and
Kandil
,
M.
,
2019
, “
Clinical Outcomes of Gall Bladder Perforation During Laparoscopic Cholecystectomy
,”
Ann. Trop. Med. Public Health
,
22
(
12
), pp.
190
206
.10.36295/ASRO.2019.221220
6.
Yuan
,
J.
,
Ma
,
M.
,
Guo
,
Y.
,
He
,
B.
,
Cai
,
Z.
,
Ye
,
B.
,
Xu
,
L.
, et al.,
2019
, “
Delayed Endoscopic Removal of Sharp Foreign Body in the Esophagus Increased Clinical Complications: An Experience From Multiple Centers in China
,”
Medicine
,
98
(
26
), p.
e16146
.10.1097/MD.0000000000016146
7.
Inayat
,
F.
,
Zafar
,
F.
,
Lodhi
,
H. T.
,
Hayat
,
M.
,
Saleem
,
H. M. K.
,
Afzal
,
A.
, and
Sohail
,
C. S.
,
2018
, “
Endoscopic Removal of Large Sharp-Edged Foreign Bodies in the Gastrointestinal Tract Using an Innovative Modification of the Overtube
,”
Cureus
,
10
(
9
), p.
e3264
.10.7759/cureus.3264
8.
Fitzgerald
,
S. G.
,
Delaney
,
G. W.
, and
Howard
,
D.
,
2020
, “
A Review of Jamming Actuation in Soft Robotics
,”
Actuators
,
9
(
4
), p.
104
.10.3390/act9040104
9.
Wang
,
S.
,
Zhang
,
R.
,
Haggerty
,
D. A.
,
Naclerio
,
N. D.
, and
Hawkes
,
E. W.
,
2020
, “
A Dexterous Tip-Extending Robot With Variable-Length Shape-Locking
,” 2020 IEEE International Conference on Robotics and Automation (
ICRA
), Paris, France, May 31–Aug. 31, pp.
9035
9041
.10.1109/ICRA40945.2020.9197311
10.
Xia
,
Y.
,
He
,
Y.
,
Zhang
,
F.
,
Liu
,
Y.
, and
Leng
,
J.
,
2021
, “
A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications
,”
Adv. Mater.
,
33
(
6
), p.
2000713
.10.1002/adma.202000713
11.
Wei
,
X.
,
Ju
,
F.
,
Chen
,
B.
,
Guo
,
H.
,
Wang
,
D.
,
Wang
,
Y.
, and
Wu
,
H.
,
2021
, “
Analysis of a Novel Manipulator With Low Melting Point Alloy Initiated Stiffness Variation and Shape Detection for Minimally Invasive Surgery
,”
Ind. Robot: Int. J. Rob. Res. Appl.
,
48
(
2
), pp.
247
258
.10.1108/IR-07-2020-0139
12.
Yan
,
J.
,
Shi
,
P.
,
Xu
,
Z.
, and
Zhao
,
J.
,
2022
, “
A Wide-Range Stiffness-Tunable Soft Actuator Inspired by Deep-Sea Glass Sponges
,”
Soft Rob.
,
9
(
3
), pp.
625
637
.10.1089/soro.2020.0163
13.
Chautems
,
C.
,
Tonazzini
,
A.
,
Boehler
,
Q.
,
Jeong
,
S. H.
,
Floreano
,
D.
, and
Nelson
,
B. J.
,
2022
, “
Magnetic Continuum Device With Variable Stiffness for Minimally Invasive Surgery
,”
Adv. Intell. Syst.
,
2
(
6
), p.
1900086
.10.1002/aisy.201900086
14.
Choi
,
J.
,
Ahn
,
S. H.
,
Kim
,
C.
,
Park
,
J.-H.
,
Song
,
H.-Y.
, and
Cho
,
K.-J.
,
2020
, “
Design of Continuum Robot With Variable Stiffness for Gastrointestinal Stenting Using Conformability Factor
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
4
), pp.
529
532
.10.1109/TMRB.2020.3031842
15.
Shang
,
Z.
,
Ma
,
J.
,
You
,
Z.
, and
Wang
,
S.
,
2020
, “
A Foldable Manipulator With Tunable Stiffness Based on Braided Structure
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
108
(
2
), pp.
316
325
.10.1002/jbm.b.34390
16.
Sun
,
Y.
,
Liu
,
H.
,
Wang
,
S.
,
Back
,
J.
,
Zuo
,
S.
,
Bernth
,
J. E.
,
Zhang
,
G.
,
Wang
,
G.
, and
Li
,
J.
,
2020
, “
A Variable-Dimension Overtube for Natural Orifice Transluminal Endoscopic Surgery
,”
IEEE Access
,
8
, pp.
42720
42733
.10.1109/ACCESS.2020.2976480
17.
Runciman
,
M.
,
Avery
,
J.
,
Zhao
,
M.
,
Darzi
,
A.
, and
Mylonas
,
G. P.
,
2020
, “
Deployable, Variable Stiffness, Cable Driven Robot for Minimally Invasive Surgery
,”
Front. Rob. AI
,
6
, p.
141
.10.3389/frobt.2019.00141
18.
Liu
,
G.
,
Hua
,
J.
,
Wu
,
Z.
,
Meng
,
T.
,
Sun
,
M.
,
Huang
,
P.
,
He
,
X.
,
Sun
,
W.
,
Li
,
X.
, and
Chen
,
Y.
,
2020
, “
Automatic Classification of Esophageal Lesions in Endoscopic Images Using a Convolutional Neural Network
,”
Ann. Transl. Med.
,
8
(
7
), p.
486
.10.21037/atm.2020.03.24
19.
Chai
,
J.
, ed.,
2017
,
Esophageal Abnormalities
,
BoD—Books on Demand
,
Zagreb, Croatia
.
20.
Kim
,
J.
,
de Mathelin
,
M.
,
Ikuta
,
K.
, and
Kwon
,
D.-S.
,
2022
, “
Advancement of Flexible Robot Technologies for Endoluminal Surgeries
,”
Proc. IEEE
,
110
(
7
), pp.
909
931
.10.1109/JPROC.2022.3170109
21.
Takase
,
K.
,
Aikawa
,
M.
,
Okada
,
K.
,
Watanabe
,
Y.
,
Okamoto
,
K.
,
Sato
,
H.
,
Nonaka
,
K.
, et al.,
2015
, “
Development of Novel Treatment With a Bioabsorbable Esophageal Patch for Benign Esophageal Stricture
,”
Dis. Esophagus
,
28
(
8
), pp.
728
734
.10.1111/dote.12281
22.
Brancadoro
,
M.
,
Manti
,
M.
,
Grani
,
F.
,
Tognarelli
,
S.
,
Menciassi
,
A.
, and
Cianchetti
,
M.
,
2019
, “
Toward a Variable Stiffness Surgical Manipulator Based on Fiber Jamming Transition
,”
Front. Rob. AI
,
6
, p.
12
.10.3389/frobt.2019.00012
23.
Zhao
,
R.
,
Yao
,
Y.
, and
Luo
,
Y.
,
2016
, “
Development of a Variable Stiffness Over Tube Based on Low-Melting-Point-Alloy for Endoscopic Surgery
,”
ASME J. Med. Devices
,
10
(
2
), p.
021002
.10.1115/1.4032813
24.
Shang
,
Z.
,
Chen
,
J.
,
Zhou
,
Z.
,
Zhuang
,
H.
, and
Ren
,
X.
,
2023
, “
Flexible Furniture Structure Based on Braiding Technology and Fiber Jamming
,”
Mech. Adv. Mater. Struct.
, pp.
1
10
.10.1080/15376494.2023.2296554
25.
Wang
,
H.
, and
Zuo
,
S.
,
2023
, “
A Novel Variable-Diameter-Stiffness Guiding Sheath for Endoscopic Surgery
,”
IEEE Rob. Autom. Lett.
,
8
(
1
), pp.
89
96
.10.1109/LRA.2022.3223022
26.
Lee
,
J.
,
Huprich
,
J.
,
Kujath
,
C.
,
Ravi
,
K.
,
Enders
,
F.
,
Smyrk
,
T. C.
,
Katzka
,
D. A.
,
Talley
,
N. J.
, and
Alexander
,
J. A.
,
2012
, “
Esophageal Diameter Is Decreased in Some Patients With Eosinophilic Esophagitis and Might Increase With Topical Corticosteroid Therapy
,”
Clin. Gastroenterol. Hepatol.
,
10
(
5
), pp.
481
486
.10.1016/j.cgh.2011.12.042
27.
Khanicheh
,
A.
, and
Shergill
,
A. K.
,
2019
, “
Endoscope Design for the Future
,”
Tech. Gastrointest. Endosc.
,
21
(
3
), pp.
167
173
.10.1016/j.tgie.2019.05.003
28.
Winship
,
D. H.
, and
Zboralske
,
F. F.
,
1967
, “
The Esophageal Propulsive Force: Esophageal Response to Acute Obstruction
,”
J. Clin. Invest.
,
46
(
9
), pp.
1391
1401
.10.1172/JCI105631
29.
Suo
,
D.
,
Rao
,
J.
,
Wang
,
H.
,
Zhang
,
Z.
,
Leung
,
P. H.-M.
,
Zhang
,
H.
,
Tao
,
X.
, and
Zhao
,
X.
,
2022
, “
A Universal Biocompatible Coating for Enhanced Lubrication and Bacterial Inhibition
,”
Biomater. Sci.
,
10
(
13
), pp.
3493
3502
.10.1039/D2BM00598K
You do not currently have access to this content.