Abstract

This study addresses the challenges of traditional catheterization techniques by integrating UFACTORY's uArm Swift Pro robotic arm with the OpenMV camera module, enhanced by the magnetic tractor beam (MTB) method. The goal is to improve precision, stability, and minimally invasive operation in catheter-based medical procedures. The uArm Swift Pro offers a robust and adaptable platform, while the OpenMV camera provides accurate real-time tracking of catheter tips. To evaluate the system's effectiveness, experimental models replicating realistic anatomical scenarios were created using advanced three-dimensional (3D) printing techniques. Preliminary results demonstrate that this integrated system enhances the accuracy and safety of catheterization, suggesting its potential to advance medical robotics and contribute to more patient-friendly interventions. This work underscores the potential for robotics to revolutionize medical procedures, ensuring better outcomes and reduced patient discomfort.

References

1.
Palep
,
J. H.
,
2009
, “
Robotic Assisted Minimally Invasive Surgery
,”
J. Minimal Access Surg.
,
5
(
1
), pp.
1
7
.10.4103/0972-9941.51313
2.
Advincula
,
A. P.
, and
Wang
,
K.
,
2009
, “
Evolving Role and Current State of Robotics in Minimally Invasive Gynecologic Surgery
,”
J. Minimally Invasive Gynecol.
,
16
(
3
), pp.
291
301
.10.1016/j.jmig.2009.03.003
3.
Su
,
H.
,
Mariani
,
A.
,
Ovur
,
S. E.
,
Menciassi
,
A.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2021
, “
Toward Teaching by Demonstration for Robot-Assisted Minimally Invasive Surgery
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
2
), pp.
484
494
.10.1109/TASE.2020.3045655
4.
Carpi
,
F.
, and
Pappone
,
C.
,
2009
, “
Stereotaxis Niobe® Magnetic Navigation System for Endocardial Catheter Ablation and Gastrointestinal Capsule Endoscopy
,”
Expert Rev. Med. Devices
,
6
(
5
), pp.
487
498
.10.1586/erd.09.32
5.
Heunis
,
C. M.
,
Wotte
,
Y. P.
,
Sikorski
,
J.
,
Furtado
,
G. P.
, and
Misra
,
S.
,
2020
, “
The Arm System-Autonomous Steering of Magnetically-Actuated Catheters: Towards Endovascular Applications
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
705
712
.10.1109/LRA.2020.2965077
6.
Le
,
V. N.
,
Nguyen
,
N. H.
,
Alameh
,
K.
,
Weerasooriya
,
R.
, and
Pratten
,
P.
,
2016
, “
Accurate Modeling and Positioning of a Magnetically Controlled Catheter Tip
,”
Med. Phys.
,
43
(
2
), pp.
650
663
.10.1118/1.4939228
7.
Liu
,
T.
,
Jackson
,
R.
,
Franson
,
D.
,
Poirot
,
N. L.
,
Criss
,
R. K.
,
Seiberlich
,
N.
,
Griswold
,
M. A.
, and
Cavusoglu
,
M. C.
,
2017
, “
Iterative Jacobian-Based Inverse Kinematics and Open-Loop Control of an MRI-Guided Magnetically Actuated Steerable Catheter System
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1765
1776
.10.1109/TMECH.2017.2704526
8.
Liu
,
T.
,
Lombard Poirot
,
N.
,
Greigarn
,
T.
, and
Cenk
,
Çavuşoğlu
,
M.
,
2017
, “
Design of a Magnetic Resonance Imaging Guided Magnetically Actuated Steerable Catheter
,”
ASME J. Med. Devices
,
11
(
2
), p.
021004
.10.1115/1.4036095
9.
Sikorski
,
J.
,
Heunis
,
C. M.
,
Obeid
,
R.
,
Venkiteswaran
,
V. K.
, and
Misra
,
S.
,
2022
, “
A Flexible Catheter System for Ultrasound-Guided Magnetic Projectile Delivery
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1959
1972
.10.1109/TRO.2021.3123865
10.
Jeon
,
S.
, and
Jang
,
G.
,
2012
, “
Precise Steering and Unclogging Motions of a Catheter With a Rotary Magnetic Drill Tip Actuated by a Magnetic Navigation System
,”
IEEE Trans. Magn.
,
48
(
11
), pp.
4062
4065
.10.1109/TMAG.2012.2194480
11.
Ali
,
A.
,
Plettenburg
,
D. H.
, and
Breedveld
,
P.
,
2016
, “
Steerable Catheters in Cardiology: Classifying Steerability and Assessing Future Challenges
,”
IEEE Trans. Biomed. Eng.
,
63
(
4
), pp.
679
693
.10.1109/TBME.2016.2525785
12.
Ataollahi
,
A.
,
Karim
,
R.
,
Fallah
,
A. S.
,
Rhode
,
K.
,
Razavi
,
R.
,
Seneviratne
,
L. D.
,
Schaeffter
,
T.
, and
Althoefer
,
K.
,
2016
, “
Three-Degree-of-Freedom MR-Compatible Multisegment Cardiac Catheter Steering Mechanism
,”
IEEE Trans. Biomed. Eng.
,
63
(
11
), pp.
2425
2435
.10.1109/TBME.2013.2276739
13.
Filgueiras-Rama
,
D.
,
Estrada
,
A.
,
Shachar
,
J.
,
Castrejón
,
S.
,
Doiny
,
D.
,
Ortega
,
M.
,
Gang
,
E.
, and
Merino
,
J. L.
,
2013
, “
Remote Magnetic Navigation for Accurate, Real-Time Catheter Positioning and Ablation in Cardiac Electrophysiology Procedures
,”
J. Visualized Exp.: JoVE
, (
74
), p.
3658
.10.3791/3658
14.
Chen
,
Y.
,
Xu
,
S.
,
Squires
,
A.
,
Seifabadi
,
R.
,
Turkbey
,
I. B.
,
Pinto
,
P. A.
,
Choyke
,
P.
,
Wood
,
B.
, and
Tse
,
Z. T. H.
,
2018
, “
MRI-Guided Robotically Assisted Focal Laser Ablation of the Prostate Using Canine Cadavers
,”
IEEE Trans. Biomed. Eng.
,
65
(
7
), pp.
1434
1442
.10.1109/TBME.2017.2756907
15.
Liu
,
T.
,
Poirot
,
N. L.
,
Franson
,
D.
,
Seiberlich
,
N.
,
Griswold
,
M. A.
, and
Çavuşoğlu
,
M. C.
,
2016
, “
Modeling and Validation of the Three-Dimensional Deflection of an MRI-Compatible Magnetically Actuated Steerable Catheter
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2142
2154
.10.1109/TBME.2015.2510743
16.
Muller
,
L.
,
Saeed
,
M.
,
Wilson
,
M. W.
, and
Hetts
,
S. W.
,
2012
, “
Remote Control Catheter Navigation: Options for Guidance Under MRI
,”
J. Cardiovasc. Magn. Reson.
,
14
(
1
), pp.
43
49
.10.1186/1532-429X-14-33
17.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.10.1109/TRO.2015.2489500
18.
Dupont
,
P. E.
,
Simaan
,
N.
,
Choset
,
H.
, and
Rucker
,
C.
,
2022
, “
Continuum Robots for Medical Interventions
,”
Proc. IEEE
,
110
(
7
), pp.
847
870
.10.1109/JPROC.2022.3141338
19.
Russo
,
M.
,
Sadati
,
S. M. H.
,
Dong
,
X.
,
Mohammad
,
A.
,
Walker
,
I. D.
,
Bergeles
,
C.
,
Xu
,
K.
, and
Axinte
,
D. A.
,
2023
, “
Continuum Robots: An Overview
,”
Adv. Intell. Syst.
,
5
(
5
), p.
2200367
.10.1002/aisy.202200367
20.
Martin
,
J. W.
,
Scaglioni
,
B.
,
Norton
,
J. C.
,
Subramanian
,
V.
,
Arezzo
,
A.
,
Obstein
,
K. L.
, and
Valdastri
,
P.
,
2020
, “
Enabling the Future of Colonoscopy With Intelligent and Autonomous Magnetic Manipulation
,”
Nat. Mach. Intell.
,
2
(
10
), pp.
595
606
.10.1038/s42256-020-00231-9
21.
Chathuranga
,
D.
,
Lloyd
,
P.
,
Chandler
,
J. H.
,
Harris
,
R. A.
, and
Valdastri
,
P.
,
2024
, “
Assisted Magnetic Soft Continuum Robot Navigation Via Rotating Magnetic Fields
,”
IEEE Rob. Autom. Lett.
,
9
(
1
), pp.
183
190
.10.1109/LRA.2023.3331292
22.
Pittiglio
,
G.
,
Brockdorff
,
M.
,
da Veiga
,
T.
,
Davy
,
J.
,
Chandler
,
J. H.
, and
Valdastri
,
P.
,
2023
, “
Collaborative Magnetic Manipulation Via Two Robotically Actuated Permanent Magnets
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1407
1418
.10.1109/TRO.2022.3209038
23.
Limpabandhu
,
C.
,
Hu
,
Y.
,
Ren
,
H.
,
Song
,
W.
, and
Tse
,
Z. T. H.
,
2023
, “
Actuation Technologies for Magnetically Guided Catheters
,”
Minimally Invasive Ther. Allied Technol.
,
32
(
4
), pp.
137
152
.10.1080/13645706.2023.2198004
24.
Hwang
,
J.
,
Kim
,
J-y.
, and
Choi
,
H.
,
2020
, “
A Review of Magnetic Actuation Systems and Magnetically Actuated Guidewire-and Catheter-Based Microrobots for Vascular Interventions
,”
Intell. Serv. Rob.
,
13
(
1
), pp.
1
14
.10.1007/s11370-020-00311-0
25.
Freschi
,
C.
,
Ferrari
,
V.
,
Melfi
,
F.
,
Ferrari
,
M.
,
Mosca
,
F.
, and
Cuschieri
,
A.
,
2013
, “
Technical Review of the da Vinci Surgical Telemanipulator
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
9
(
4
), pp.
396
406
.10.1002/rcs.1468
26.
Dyer
,
R. B.
,
Chen
,
M. Y.
,
Zagoria
,
R. J.
,
Regan
,
J. D.
,
Hood
,
C. G.
, and
Kavanagh
,
P. V.
,
2002
, “
Complications of Ureteral Stent Placement
,”
Radiographics
,
22
(
5
), pp.
1005
1022
.10.1148/radiographics.22.5.g02se081005
27.
Chueh
,
J.-Y.
,
Kang
,
D.-H.
,
Kim
,
B. M.
, and
Gounis
,
M. J.
,
2020
, “
Role of Balloon Guide Catheter in Modern Endovascular Thrombectomy
,”
J. Korean Neurosurg. Soc.
,
63
(
1
), pp.
14
25
.10.3340/jkns.2019.0114
You do not currently have access to this content.