Graphical Abstract Figure

Mechanical design of an MR-Safe pneumatic stepper motor.

Graphical Abstract Figure

Mechanical design of an MR-Safe pneumatic stepper motor.

Close modal

Abstract

Magnetic resonance imaging (MRI) can provide high contrast soft tissue visualization without ionizing radiation, which makes it an attractive imaging modality for interventional procedures. However, the strong magnetic and radio frequency (RF) fields impose significant challenges to the development of robotic systems within the magnetic resonance environment. Consequently, designing MRI-compatible actuators is crucial for advancing MRI-guided robotic systems. This paper reports the design, control, and characterization of a gear-based pneumatic stepper motor. The motor is designed with three actuating piston units and a geared rotor. The three actuating pistons are driven sequentially by compressed air to push the geared rotor and to generate bidirectional stepwise motion. Experiments were conducted to characterize the motor in terms of torque, speed, control, and MRI compatibility. The results demonstrate that the motor can deliver a maximum continuous torque of 1300 mNm at 80 pounds per square inch (PSI) (0.55 MPa) with 9 m air hoses. The closed-loop control evaluation demonstrates the steady-state error of position tracking was 0.81±0.52 deg. The MRI compatibility study indicated negligible image quality degradation. Therefore, the proposed pneumatic stepper motor can effectively serve as an actuator for MRI-guided robotic applications.

References

1.
Hricak
,
H.
,
Choyke
,
P. L.
,
Eberhardt
,
S. C.
,
Leibel
,
S. A.
, and
Scardino
,
P. T.
,
2007
, “
Imaging Prostate Cancer: A Multidisciplinary Perspective 1
,”
Radiology
,
243
(
1
), pp.
28
53
.10.1148/radiol.2431030580
2.
Susil
,
R. C.
,
Menard
,
C.
,
Krieger
,
A.
,
Coleman
,
J. A.
,
Camphausen
,
K.
,
Choyke
,
P.
,
Fichtinger
,
G.
,
Whitcomb
,
L. L.
,
Coleman
,
C. N.
, and
Atalar
,
E.
,
2006
, “
Transrectal Prostate Biopsy and Fiducial Marker Placement in a Standard 1.5 t Magnetic Resonance Imaging Scanner
,”
J. Urol.
,
175
(
1
), pp.
113
120
.10.1016/S0022-5347(05)00065-0
3.
Beyersdorff
,
D.
,
Winkel
,
A.
,
Hamm
,
B.
,
Lenk
,
S.
,
Loening
,
S. A.
, and
Taupitz
,
M.
,
2005
, “
MR Imaging–Guided Prostate Biopsy With a Closed MR Unit at 1.5 T: Initial Results 1
,”
Radiology
,
234
(
2
), pp.
576
581
.10.1148/radiol.2342031887
4.
D'Amico
,
A. V.
,
Tempany
,
C. M.
,
Cormack
,
R.
,
Hata
,
N.
,
Jinzaki
,
M.
,
Tuncali
,
K.
,
Weinstein
,
M.
, and
Richie
,
J. P.
,
2000
, “
Transperineal Magnetic Resonance Image Guided Prostate Biopsy
,”
J. Urol.
,
164
(
2
), pp.
385
387
.10.1016/S0022-5347(05)67366-1
5.
Penzkofer
,
T.
,
Tuncali
,
K.
,
Fedorov
,
A.
,
Song
,
S.-E.
,
Tokuda
,
J.
,
Fennessy
,
F. M.
,
Vangel
,
M. G.
, et al.,
2015
, “
Transperineal In-Bore 3-T MR Imaging– Guided Prostate Biopsy: A Prospective Clinical Observational Study
,”
Radiology
,
274
(
1
), pp.
170
180
.10.1148/radiol.14140221
6.
Sutherland
,
G. R.
,
Latour
,
I.
, and
Greer
,
A. D.
,
2008
, “
Integrating an Image-Guided Robot With Intraoperative MRI
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
3
), pp.
59
65
.10.1109/EMB.2007.910272
7.
Tokuda
,
J.
,
Chauvin
,
L.
,
Ninni
,
B.
,
Kato
,
T.
,
King
,
F.
,
Tuncali
,
K.
, and
Hata
,
N.
,
2018
, “
Motion Compensation for MRI-Compatible Patient-Mounted Needle Guide Device: Estimation of Targeting Accuracy in MRI-Guided Kidney Cryoablations
,”
Phys. Med. Biol.
,
63
(
8
), p.
085010
.10.1088/1361-6560/aab736
8.
Patel
,
N. A.
,
Li
,
G.
,
Shang
,
W.
,
Wartenberg
,
M.
,
Heffter
,
T.
,
Burdette
,
E. C.
,
Iordachita
,
I.
, et al.,
2019
, “
System Integration and Preliminary Clinical Evaluation of a Robotic System for MRI-Guided Transperineal Prostate Biopsy
,”
J. Med. Rob. Res.
,
4
(
2
), pp.
1
14
.10.1142/S2424905X19500016
9.
Li
,
G.
,
Patel
,
N. A.
,
Wang
,
Y.
,
Dumoulin
,
C.
,
Loew
,
W.
,
Loparo
,
O.
,
Schneider
,
K.
, et al.,
2020
, “
Fully Actuated Bodymounted Robotic System for MRI-Guided Lower Back Pain Injections: Initial Phantom and Cadaver Studies
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5245
5251
.10.1109/LRA.2020.3007459
10.
Li
,
G.
,
Patel
,
N. A.
,
Burdette
,
E. C.
,
Pilitsis
,
J. G.
,
Su
,
H.
, and
Fischer
,
G. S.
,
2021
, “
A Fully Actuated Robotic Assistant for MRI-Guided Precision Conformal Ablation of Brain Tumors
,”
IEEE/ASME Trans. Mechatron.
,
26
(
1
), pp.
255
266
.10.1109/TMECH.2020.3012903
11.
Krieger
,
A.
,
Song
,
S.
,
Cho
,
N. B.
,
Iordachita
,
I. I.
,
Guion
,
P.
,
Fichtinger
,
G.
, and
Whitcomb
,
L. L.
,
2013
, “
Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
273
284
.10.1109/TMECH.2011.2163523
12.
Fischer
,
G. S.
,
Krieger
,
A.
,
Iordachita
,
I.
,
Csoma
,
C.
,
Whitcomb
,
L. L.
, and
Fichtinger
,
G.
,
2008
, “
MRI Compatibility of Robot Actuation Techniques–A Comparative Study
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
, New York, Sept. 6–10, pp.
509
517
.10.1007/978-3-540-85990-1_61
13.
Su
,
H.
,
Shang
,
W.
,
Cole
,
G.
,
Li
,
G.
,
Harrington
,
K.
,
Camilo
,
A.
,
Tokuda
,
J.
,
Tempany
,
C. M.
,
Hata
,
N.
, and
Fischer
,
G. S.
,
2015
, “
Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1920
1932
.10.1109/TMECH.2014.2359413
14.
Li
,
G.
,
Su
,
H.
,
Cole
,
G.
,
Shang
,
W.
,
Harrington
,
K.
,
Camilo
,
A.
,
Pilitsis
,
J. G.
, and
Fischer
,
G. S.
,
2015
, “
Robotic System for MRI-Guided Stereotactic Neurosurgery
,”
IEEE Trans. Biomed. Eng.
,
62
(
4
), pp.
1077
1088
. 10.1109/TBME.2014.2367233
15.
Kim
,
Y.
,
Cheng
,
S. S.
,
Diakite
,
M.
,
Gullapalli
,
R. P.
,
Simard
,
J. M.
, and
Desai
,
J. P.
,
2017
, “
Toward the Development of a Flexible Mesoscale MRI-Compatible Neurosurgical Continuum Robot
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1386
1397
.10.1109/TRO.2017.2719035
16.
Xiao
,
Q.
,
Monfaredi
,
R.
,
Musa
,
M.
,
Cleary
,
K.
, and
Chen
,
Y.
,
2020
, “
MR-Conditional Actuations: A Review
,”
Ann. Biomed. Eng.
,
48
(
12
), pp.
2707
2733
.10.1007/s10439-020-02597-8
17.
Dong
,
Z.
,
Guo
,
Z.
,
Lee
,
K.-H.
,
Fang
,
G.
,
Tang
,
W. L.
,
Chang
,
H.-C.
,
Chan
,
D. T. M.
, and
Kwok
,
K. W.
,
2019
, “
High-Performance Continuous Hydraulic Motor for MR Safe Robotic Teleoperation
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1964
1971
.10.1109/LRA.2019.2899189
18.
Simonelli
,
J.
,
Lee
,
Y.-H.
,
Chen
,
C.-W.
,
Li
,
X.
,
Mikaiel
,
S.
,
Lu
,
D.
,
Wu
,
H. H.
, and
Tsao
,
T.-C.
,
2020
, “
Hydrostatic Actuation for Remote Operations in MR Environment
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
894
905
.10.1109/TMECH.2019.2959805
19.
Stoianovici
,
D.
,
Patriciu
,
A.
,
Petrisor
,
D.
,
Mazilu
,
D.
, and
Kavoussi
,
L.
,
2007
, “
A New Type of Motor: Pneumatic Step Motor
,”
IEEE/ASME Trans. Mechatron.
,
12
(
1
), pp.
98
106
.10.1109/TMECH.2006.886258
20.
Stoianovici
,
D.
,
Kim
,
C.
,
Srimathveeravalli
,
G.
,
Sebrecht
,
P.
,
Petrisor
,
D.
,
Coleman
,
J.
,
Solomon
,
S. B.
, and
Hricak
,
H.
,
2014
, “
MRI-Safe Robot for Endorectal Prostate Biopsy
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1289
1299
.10.1109/TMECH.2013.2279775
21.
Groenhuis
,
V.
, and
Stramigioli
,
S.
,
2016
, “
Lasercutting Pneumatics
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1604
1611
.10.1109/TMECH.2015.2508100
22.
Groenhuis
,
V.
,
Siepel
,
F. J.
,
Veltman
,
J.
, and
Stramigioli
,
S.
,
2017
, “
Design and Characterization of Stormram 4: An MRI-Compatible Robotic System for Breast Biopsy
,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Vancouver, BC, Canada, Sept. 24–28, pp.
928
933
.10.1109/IROS.2017.8202256
23.
Farimani
,
F. S.
,
Mojarradi
,
M.
,
Hekman
,
E.
, and
Misra
,
S.
,
2020
, “
Pneuact-II: Hybrid Manufactured Electromagnetically Stealth Pneumatic Stepper Actuator
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3588
3593
.10.1109/LRA.2020.2974652
24.
Chen
,
Y.
,
Godage
,
I. S.
,
Tse
,
Z. T. H.
,
Webster
,
R. J.
, and
Barth
,
E. J.
,
2017
, “
Characterization and Control of a Pneumatic Motor for MR-Conditional Robotic Applications
,”
IEEE/ASME Trans. Mechatron.
,
22
(
6
), pp.
2780
2789
.10.1109/TMECH.2017.2767906
25.
Comber
,
D. B.
,
Slightam
,
J. E.
,
Gervasi
,
V. R.
,
Neimat
,
J. S.
, and
Barth
,
E. J.
,
2016
, “
Design, Additive Manufacture, and Control of a Pneumatic MR-compatible Needle Driver
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
138
149
.10.1109/TRO.2015.2504981
26.
Su
,
H.
,
Li
,
G.
, and
Fischer
,
G. S.
,
2019
, “
Sensors, Actuators, and Robots for MRI-Guided Surgery and Interventions
,”
The Encyclopedia of MEDICAL ROBOTICS: Volume 3 Image-Guided Surgical Procedures and Interventions
,
World Scientific
, Singapore, pp.
201
231
.
27.
Su
,
H.
,
Kwok
,
K.-W.
,
Cleary
,
K.
,
Iordachita
,
I.
,
Cavusoglu
,
M. C.
,
Desai
,
J. P.
, and
Fischer
,
G. S.
,
2022
, “
State of the Art and Future Opportunities in MRI-Guided Robot-Assisted Surgery and Interventions
,”
Proc. IEEE
,
110
(
7
), pp.
968
992
.10.1109/JPROC.2022.3169146
28.
Farooq
,
M. U.
, and
Ko
,
S. Y.
,
2023
, “
A Decade of MRI Compatible Robots: Systematic Review
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
862
884
.10.1109/TRO.2022.3212626
29.
Groenhuis
,
V.
,
Siepel
,
F. J.
, and
Stramigioli
,
S.
,
2018
, “
Dual-Speed MR Safe Pneumatic Stepper Motors
,”
Robotics: Science and Systems
, Pittsburgh, PA, June 26–30.https://www.roboticsproceedings.org/rss14/p30.pdf
30.
Groenhuis
,
V.
, and
Stramigioli
,
S.
,
2018
, “
Rapid Prototyping High-Performance MR Safe Pneumatic Stepper Motors
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1843
1853
.10.1109/TMECH.2018.2840682
31.
Yang
,
B.
,
Tan
,
U.-X.
,
McMillan
,
A. B.
,
Gullapalli
,
R.
, and
Desai
,
J. P.
,
2011
, “
Design and Control of a 1-Dof MRI-Compatible Pneumatically Actuated Robot With Long Transmission Lines
,”
IEEE/ASME Trans. Mechatron.
,
16
(
6
), pp.
1040
1048
.10.1109/TMECH.2010.2071393
32.
National Electrical Manufacturers Association
, 2021,
Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging, NEMA Standard Publication MS 1-2008 (R2020)
,
National Electrical Manufacturers Association
, Arlington, VA.
33.
National Electrical Manufacturers Association
, 2021,
Determination of Two-Dimensional Geometric Distortion in Diagnostic Magnetic Resonance Images, NEMA Standard Publication MS 2-2008 (R2020)
,
National Electrical Manufacturers Association
, Arlington, VA.
34.
Sajima
,
H.
,
Kamiuchi
,
H.
,
Kuwana
,
K.
,
Dohi
,
T.
, and
Masamune
,
K.
, and
Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
,
2012
, “
MR-Safe Pneumatic Rotation Stepping Actuator
,”
J. Rob. Mechatron.
,
24
(
5
), pp.
820
827
.10.20965/jrm.2012.p0820
You do not currently have access to this content.