Abstract

In this paper, we present a novel method to fabricate a smart nail for electromagnetic targeting of distal screw-holes in intramedullary interlocking-nail surgery. The nail is fabricated by using a flexible magnetic-alloy Metglas sheet with a rolling-to-attaching method. That is, among most high permeable magnetic materials, the Metglas sheet has superior features in flexibility and bendability and therefore can be rolled and inserted inside the nail to conform accordingly to curvature of internal surface of the nail. Regarding the targeting system, we used a conventional C-shaped electromagnet (which consists of a C-shaped silicon steel core, emitting coil, and receiving coil) with corresponding measurement electronic instruments as the targeting system. Initially, an AC input voltage is applied to the emitting coil to generate magnetic flux within the gap (i.e., air) between emitting coil and receiving coil. As a result of electromagnetic induction, an AC voltage is induced in the receiving coil. As the nail is axially moved or rotated within the gap (i.e., air) between the emitting and receiving coils, the magnetic flux between the coils is influenced, leading to a change in the voltage output of the receiving coil. This change in voltage is further assessed to identify location and orientation of the Metglas sheet (as well as that of screw holes). Based on this targeting principle, we conduct location and orientation targeting tests. Results show that our method not only can successfully achieve these targeting but also significantly simplifies the complexity of both targeting system and surgical procedure, in practical perspective.

References

1.
Whatling
,
G. M.
, and
Nokes
,
L. D. M.
,
2006
, “
Literature Review of Current Techniques for the Insertion of Distal Screws Into Intramedullary Locking Nails
,”
Injury
,
37
(
2
), pp.
109
119
.10.1016/j.injury.2005.09.009
2.
Szakelyhidi
,
D. C.
,
2002
, “
Development of a Magnetic Targeting Device Applied to Interlocking of Distal Intramedullary Nail Screw Holes
,”
Master thesis
, Virginia Tech, Blacksburg, VA.https://vtechworks.lib.vt.edu/items/56a24121-473e-467f-ada3-4b5ef8a7a279
3.
Catamo
,
L.
,
Rotini
,
R.
,
Rocca
,
M.
,
Giardino
,
R.
, and
Fontanesi
,
G.
,
1998
, “
Distal Centering in Locked Intramedullary Osteosynthesis of the Femur: Use of a Magnet-Resistant Probe
,”
Chir. Organi Mov.
,
83
(
4
), pp.
375
–37
9
.https://pubmed.ncbi.nlm.nih.gov/10369017/
4.
Rigoberto
,
M.
, and
Arturo
,
M.
,
2007
, “
Assistant System for Locking Intramedullary Nails Used to Repair Fractures of the Long Bones
,”
Proceedings of the 4th International Conference on Electrical and Electronics Engineering
,
Mexico City, Mexico
,
Sept. 5–7
, pp.
65
67
.10.1109/ICEEE.2007.4344974
5.
Martinez
,
M. R.
, and
Minor
,
M. A.
,
2010
, “
A System for Distal Fixation of Intramedullary Nails
,”
Int. J. Appl. Electromagn. Mech.
,
32
(
1
), pp.
21
30
.10.3233/JAE-2010-1063
6.
Li
,
W.
,
Zhao
,
Q.
, and
Gao
,
Y.
,
2010
, “
A Locator Based on DSP for the Hollow Intramedullary Nail
,”
Proceedings of the International Conference on Intelligent Computing and Integrated Systems
,
Guilin, China
,
Oct. 22–24
, pp.
269
272
.10.1109/ICISS.2010.5657179
7.
Lee
,
M. S.
,
Wu
,
S. Y.
,
Wong
,
T. H.
,
Hsu
,
W.
, and
Chung
,
T. K.
,
2012
, “
A Novel Guiding Device for Distal Locking of Intramedullary Nails
,”
Proceedings of the SENSORS
,
Taipei, Taiwan
,
Oct. 28–31
, pp.
1
4
.10.1109/ICSENS.2012.6411140
8.
Chung
,
T. K.
,
Chu
,
H. J.
,
Wong
,
T. H.
,
Cheng
,
Y. W.
,
Hsu
,
W.
, and
Lee
,
M. S.
,
2013
, “
Electromagnetic Coil/Inductance-Based Nondestructive Methods for Locating Distal Screw-Holes of an Intramedullary Interlocking-Nail
,”
Proc. SPIE
8695
, p.
86952I
.10.1117/12.2012275
9.
Wong
,
T. H.
,
Lee
,
M. S.
,
Wu
,
S. Y.
,
Hsu
,
W.
,
Chung
,
T. K.
,
Wu
,
C. P.
,
Hsu
,
P. J.
, and
Yang
,
Y. S.
,
2017
, “
Novel Passive Two-Stage Magnetic Targeting Devices for Distal Locking of Interlocking Nails
,”
J. Healthcare Eng.
,
2017
(
1
), pp.
1
11
.10.1155/2017/3619403
10.
Sanatmetal, 2016, “
Magic Humerus Nail
,” Sanatmetal, Eger, Hungary, accessed Dec. 23,
2024
, https://sanatmetal.hu/en/product/magic-humerus-nail/
11.
SmithNephew, 2019, “
TRIGEN SURESHOT Distal Targeting System
,” SmithNephew Inc., Memphis, TN, accessed Dec. 23,
2024
, https://www.smith-nephew.com/en-us/health-care professionals/products/orthopaedics/trigen-sureshot
12.
Gao
,
Y.
,
Wang
,
H.
,
Tu
,
P.
,
Hu
,
J.
,
Wang
,
Q.
, and
Chen
,
X.
,
2021
, “
A Novel Dynamic Electromagnetic Tracking Navigation System for Distal Locking of Intramedullary Nails
,”
Comput. Methods Programs Biomed.
,
209
, p.
106326
.10.1016/j.cmpb.2021.106326
13.
Wong
,
T. H.
,
Chung
,
T. K.
,
Liu
,
T. Z.
,
Chu
,
H. J.
,
Hsu
,
W.
,
Yeh
,
P. C.
,
Chen
,
C. C.
,
Lee
,
M. S.
, and
Yang
,
Y. S.
,
2014
, “
Electromagnetic/Magnetic-Coupled Targeting System for Screw-Hole Locating in Intramedullary Interlocking-Nail Surgery
,”
IEEE Sens. J.
,
14
(
12
), pp.
4402
4410
.10.1109/JSEN.2014.2334139
14.
Sharma
,
S.
,
Telikicherla
,
A.
,
Ding
,
G.
,
Aghlmand
,
F.
,
Talkhooncheh
,
A. H.
,
Shapiro
,
M. G.
, and
Emami
,
A.
,
2021
, “
A Wireless 3D Surgical Navigation and Tracking System With 100 μm Accuracy Using Magnetic-Field Gradient-Based Localization
,”
IEEE Trans. Med. Imaging
,
40
(
8
), pp.
2066
2079
.10.1109/TMI.2021.3071120
15.
Kohli
,
M.
,
Chai
,
T. L.
,
Chen
,
I. L.
,
Wong
,
T. H.
,
Hsu
,
W.
, and
Chung
,
T. K.
,
2023
, “
An Electroplated Magnetic NiFe Film Based Electromagnetic Targeting for Interlocking-Nail Broken-Bone Surgery
,”
Proceedings of the IEEE International Magnetic Conference—Short Papers (INTERMAG Short Papers)
,
Sendai, Japan
, May 15–19, pp.
1
2
.https://scholar.nycu.edu.tw/en/publications/an-electroplated-magnetic-nife-film-based-electromagnetic-targeti
16.
Kohli
,
M.
,
Chai
,
T. L.
,
Chen
,
Y. L.
,
Wong
,
T. H.
,
Hsu
,
W.
, and
Chung
,
T. K.
,
2024
, “
A Novel Magnetic High-Permeable Thin-Film Electroplated-on-Nail Approach for Electromagnetic Targeting in Intramedullary Interlocking-Nail Surgery
,”
IEEE Trans. Magn.
,
60
(
3
), pp.
1
18
.10.1109/TMAG.2024.3357619
17.
Chen
,
C. C.
,
Yeh
,
P. C.
,
Cheng
,
C. C.
,
Lin
,
C. K.
,
Wong
,
T. H.
,
Cheng
,
Y. C.
,
Hsu
,
W.
, and
Chung
,
T. K.
,
2021
, “
Magnetic Targeting Systems for Endo-Bronchoscope Diagnosis and Intramedullary-Nail Surgery: A Review
,”
IEEE Sens. J.
,
21
(
11
), pp.
12545
12562
.10.1109/JSEN.2021.3059044
18.
Gavrila
,
H.
, and
Ionita
,
V.
,
2002
, “
Crystalline and Amorphous Soft Magnetic Materials and Their Applications- Status of Art and Challenges
,”
J. Optoelectron. Adv. Mater.
,
4
(
2
), pp.
173
192
.https://api.semanticscholar.org/CorpusID:55880161
19.
Wu
,
T.
,
Emmons
,
M.
,
Chung
,
T. K.
,
Sorge
,
J.
, and
Carman
,
G. P.
,
2010
, “
Influence of Mechanical Load Bias on Converse Magnetoelectric Laminate Composites
,”
J. Appl. Phys.
,
107
(
9
), p.
09D912
.10.1063/1.3362919
20.
Encyclopedia Magnetica, 2024, “
Magnetic Materials
,” Encyclopedia Magnetica, Czçstochowa, Poland, accessed Dec. 23,
2024
, https://www.e-magnetica.pl/doku.php/magnetic_materials
21.
Metglas Inc., 2016, “
METGLAS 2714A Cobalt Based Alloy
,” Metglas Inc., Conway, SC, accessed Dec. 23,
2024
, https://metglas.com/wp-content/uploads/2016/12/Metglas-Alloy-2714A-Cobalt-Based-Alloy.pdf
22.
Encyclopedia Magnetica, 2025, “
Magnetic Permeability
,” Encyclopedia Magnetica, Czçstochowa, Poland, accessed Dec. 23,
2024
, https://www.e-magnetica.pl/doku.php/magnetic_permeability
23.
Mouritsen
,
H.
,
2022
,
Sturkie's Avian Physiology
, 7th ed.,
Academic Press
, Cambridge, MA, Chap.
15
.
24.
Cullity, B. D., and Graham, C. D., 2009, Introduction to Magnetic Materials, Wiley-IEEE, Hoboken, NJ.
You do not currently have access to this content.