Biodegradable magnesium-calcium (Mg–Ca) implants have the ability to gradually dissolve and absorb into the human body after implantation. The similar mechanical properties to bone indicate that Mg–Ca is an ideal implant material to minimize the negative effects of stress shielding. Furthermore, using a biodegradable Mg–Ca implant prevents the need for a secondary removal surgery that commonly occurs with permanent metallic implants. The critical issue that hinders the application of Mg–Ca implants is the poor corrosion resistance to human body fluids. The corrosion process adversely affects bone ingrowth that is critical for recovery. Therefore, sequential laser shock peening (LSP) of a biodegradable Mg–Ca alloy was initiated to create a superior surface topography for improving implant performance. LSP is an innovative treatment to fabricate functional patterns on the surface of an implant. A patterned surface promotes bone ingrowth by providing a rough surface texture. Also, LSP imparts deep compressive residual stresses below the surface, which could potentially slow corrosion rates. Unique surface topographies were fabricated by changing the laser power and peening overlap ratio. The resultant effects on surface topography were investigated. Sequential peening at higher overlap ratios (75%) was found to reduce the tensile pileup region by over 40% as well as compress the overall surface by as much as 35μm.

1.
Breme
,
J.
,
Kirkpatrick
,
C.
, and
Thull
,
R.
, 2008,
Metallic Biomaterial Interfaces
,
Wiley-VCH
,
Weinheim
, pp.
3
47
.
2.
Grimm
,
M. J.
, 2009,
Biomedical Engineering Design Handbook: Orthopedic Biomaterials
, 2nd ed.,
M.
Kutz
, eds.,
McGraw-Hill
,
New York
, pp.
421
444
.
3.
Benli
,
S.
,
Aksoy
,
S.
,
Havitcioglu
,
H.
, and
Kucuk
,
M.
, 2008, “
Evaluation of Bone Plate With Low Stiffness Material in Terms of Stress Distribution
,”
J. Biomech.
0021-9290,
41
, pp.
3229
3235
.
4.
Completo
,
A.
,
Fonseca
,
F.
, and
Simoes
,
J. A.
, 2008, “
Strain Shielding in Proximal Tibia of Stemmed Knee Prosthesis: Experimental Study
,”
J. Biomech.
0021-9290,
41
, pp.
560
566
.
5.
Au
,
A. G.
,
Raso
,
V. J.
,
Liggins
,
A. B.
, and
Amirfazli
,
A.
, 2007, “
Contribution of Loading Conditions and Material Properties to Stress Shielding Near the Tibial Component of Total Knee Replacements
,”
J. Biomech.
0021-9290,
40
, pp.
1410
1416
.
6.
Shi
,
J. F.
,
Wang
,
C. J.
,
Laoui
,
T.
,
Hart
,
W.
, and
Hall
,
R.
, 2007, “
A Dynamic Model of Simulating Stress Distribution in the Distal Femur After Total Knee Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
221
, pp.
903
912
.
7.
Isaksson
,
H.
, and
Lerner
,
A. L.
, 2003, “
Mathematical Modeling of Stress Shielding With Bioresorbable Materials for Internal Fracture Fixation
,”
Bioengineering Conference
, pp.
1041
1042
.
8.
Nagels
,
J.
,
Stokdijk
,
M.
, and
Rozing
,
P. M.
, 2003, “
Stress Shielding and Bone Resorption in Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
1058-2746,
12
, pp.
35
39
.
9.
Gefen
,
A.
, 2002, “
Computational Simulations of Stress Shielding and Bone Resorption Around Existing and Computer-Designed Orthopedic Screws
,”
Med. Biol. Eng. Comput.
0140-0118,
40
, pp.
311
322
.
10.
Staiger
,
M. P.
,
Pietak
,
A. M.
,
Huadmai
,
J.
, and
Dias
,
G.
, 2006, “
Magnesium and Its Alloys as Orthopedic Biomaterials: A Review
,”
Biomaterials
0142-9612,
27
, pp.
1728
1734
.
11.
Claes
,
L. E.
, 1992, “
Mechanical Characterization of Biodegradable Implants
,”
Clin. Mater.
,
10
, pp.
41
46
.
12.
Guo
,
Y. B.
, and
Salahshoor
,
M.
, 2010, “
Process Mechanics and Surface Integrity by High-Speed Dry Milling of Biodegradable Magnesium-Calcium Implant Alloys
,”
CIRP Ann.
0007-8506,
59
(
1
), pp.
151
154
.
13.
Seiler
,
H. G.
, 1987,
Handbook on Toxicity of Inorganic Compounds
, 1st ed.,
Taylor & Francis Inc.
,
New York, NY
.
14.
Song
,
G.
, 2007, “
Control of Biodegradation of Biocompatible Magnesium Alloys
,”
Corros. Sci.
0010-938X,
49
, pp.
1696
1701
.
15.
Eliezer
,
A.
, and
Witte
,
F.
, 2007, “
The Role of Biological Environments on Magnesium Alloys as Biomaterials
,”
Proceedings of the Seventh International Conference on Mg Alloys and Their Applications
, Frankfurt,
K.
Kainer
, eds., pp.
822
827
.
16.
Hao
,
L.
, and
Lawrence
,
J.
, 2005,
Laser Surface Treatment of Bio-Implant Materials
,
Wiley
,
Sussex, UK
.
17.
Ilich
,
J. Z.
, and
Kerstetter
,
J. E.
, 2000, “
Nutrition in Bone Health Revisited: A Story Beyond Calcium
,”
J. Am. Coll. Nutr.
0731-5724,
19
, pp.
715
737
.
18.
Wu
,
G.
,
Fan
,
Y.
,
Gao
,
H.
,
Zhai
,
C.
, and
Zhu
,
Y. P.
, 2005, “
The Effect of Ca and Rare Earth Elements on the Microstructure, Mechanical Properties and Corrosion Behavior of AZ91D
,”
Mater. Sci. Eng., A
0921-5093,
408
, pp.
255
263
.
19.
Aksakal
,
B.
, and
Hanyaloglu
,
C.
, 2008, “
Bioceramic Dip-Coating on Ti-6Al-4V and 316L SS Implant Materials
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
19
, pp.
2097
2104
.
20.
Denkena
,
B.
, and
Lucas
,
A.
, 2007, “
Biocompatible Magnesium Alloys as Absorbable Implant Materials—Adjusted Surface and Subsurface Properties by Machining Processes
,”
CIRP Ann.
0007-8506,
56
, pp.
113
116
.
21.
Kieswetter
,
K.
,
Schwartz
,
Z.
,
Dean
,
D. D.
, and
Boyan
,
B. D.
, 1996, “
The Role of Implant Surface Characteristics in the Healing of Bone
,”
Crit. Rev. Oral Biol. Med.
1045-4411,
7
(
4
), pp.
329
345
.
22.
Fairand
,
B. P.
, and
Clauer
,
A. H.
, 1976, “
Effect of Water and Paint Coatings on the Magnitude of Laser-Generated Shocks
,”
Opt. Commun.
0030-4018,
18
(
4
), pp.
588
591
.
23.
Fan
,
Y.
,
Wang
,
Y.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
, 2005, “
Wave-Solid Interactions in Laser-Shocked-Induced Deformation Processes
,”
J. Appl. Phys.
0021-8979,
98
(
10
), p.
104904
.
24.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
, 1990, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
68
, pp.
775
784
.
25.
Masse
,
J. -E.
, and
Barreau
,
G.
, 1995, “
Laser Generation of Stress Waves in Metal
,”
Surf. Coat. Technol.
0257-8972,
70
, pp.
231
234
.
26.
Montross
,
C. S.
,
Wei
,
T.
,
Ye
,
L.
,
Clark
,
G.
, and
Mai
,
Y.
, 2002, “
Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,”
Int. J. Fatigue
0142-1123,
24
, pp.
1021
1036
.
27.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
,
Tollier
,
L.
, and
Bartnicki
,
E.
, 1997, “
Shock Waves From a Water-Confined Laser-Generated Plasma
,”
J. Appl. Phys.
0021-8979,
82
, pp.
2826
2832
.
28.
Fairand
,
B. P.
,
Wilcox
,
B. A.
,
Gallagher
,
W. J.
, and
Williams
,
D. N.
, 1972, “
Laser Shock-Induced Microstructure and Mechanical Property Changes in 7075 Aluminum
,”
J. Appl. Phys.
0021-8979,
43
, pp.
3893
3895
.
29.
Groover
,
M.
, 1996,
Fundamentals of Modern Manufacturing: Materials, Processes, and Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
30.
Clauer
,
A.
, 1996, “
Laser Shock Peening for Fatigue Resistance
,”
Surface Performance of Titanium
,
J. K.
Gregory
,
H. J.
Rack
, and
D.
Eylon
, eds.,
The Metal Society of AIME
,
Warrendale, PA
, pp.
217
230
.
31.
Abbas
,
G.
,
Liu
,
L.
, and
Skeldon
,
P.
, 2005, “
Corrosion Behavior of Laser-Melted Magnesium Alloys
,”
Appl. Surf. Sci.
0169-4332,
247
, pp.
347
353
.
32.
Mondal
,
A.
,
Kumar
,
S.
,
Blawert
,
C.
, and
Dahotre
,
N.
, 2008, “
Effect of Laser Surface Treatment on Corrosion and Wear Resistance of ACM720 Mg Alloy
,”
Surf. Coat. Technol.
0257-8972,
202
, pp.
3187
3198
.
33.
Peyre
,
P.
,
Fabbro
,
R.
,
Merrien
,
P.
, and
Lieurade
,
H. P.
, 1996, “
Laser Shock Processing of Aluminum Alloys: Application to High Cycle Fatigue Behavior
,”
Mater. Sci. Eng., A
0921-5093,
210
(
1–2
), pp.
102
113
.
34.
Nalla
,
R. K.
,
Altenberger
,
I.
,
Noster
,
U.
,
Liu
,
G. Y.
,
Scholtes
,
B.
, and
Ritchie
,
R. O.
, 2003, “
On the Influence of Mechanical Surface Treatments-Deep Rolling and Laser Shock Peening, on the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures
,”
Mater. Sci. Eng., A
0921-5093,
355
, pp.
216
230
.
35.
Manna
,
S.
, and
Cowie
,
W. D.
, 1996, “
Technique to Prevent or Divert Cracks
,” U.S. Patent 5,569,018.
36.
Ding
,
K.
, and
Ye
,
L.
, 2006,
Laser Shock Peening: Performance and Process Simulation
,
Woodhead
,
Cambridge, UK
.
37.
Sealy
,
M. P.
, and
Guo
,
Y. B.
, 2010, “
Surface Integrity and Process Mechanics of Laser Shock Peening of Novel Biodegradable Magnesium-Calcium (Mg-Ca) Alloy
,”
J. Mech. Behav. Biomed. Mater.
1751-6161,
3
(
7
), pp.
488
496
.
38.
Warren
,
A. W.
,
Guo
,
Y. B.
, and
Chen
,
S. C.
, 2008, “
Massive Parallel Micro Laser Shock Peening: Simulation, Validation, and Analysis
,”
Int. J. Fatigue
0142-1123,
30
, pp.
188
197
.
39.
Warren
,
A. W.
, and
Guo
,
Y. B.
, 2007, “
FEA Modeling and Analysis of 3D Pressure and Mechanical Behavior at High Strain Rate in Micro Laser Peening
,”
Trans. NAMRI/SME
1047-3025,
35
, pp.
409
416
.
40.
Caslaru
,
R.
,
Sealy
,
M. P.
,
Guo
,
Y. B.
, and
Chen
,
S. C.
, 2008, “
Fabrication and Characterization of Micro Dent Array on Aluminum 6061-T6 Surface by Laser Shock Peening
,”
Trans. NAMRI/SME
1047-3025,
37
, pp.
159
166
.
41.
Sealy
,
M. P.
, and
Guo
,
Y. B.
, 2008, “
Fabrication and Finite Element Simulation of μ-Laser Shock Peening for Micro Dents
,”
Int. J. Comp. Methods Eng. Sci. & Mech.
,
10
, pp.
149
157
.
You do not currently have access to this content.