Abstract

This paper presents a new two-step design procedure and preliminary kinematic evaluation of a novel, passive, six-bar knee-ankle-foot orthosis (KAFO). The kinematic design and preliminary kinematic gait analysis of the KAFO are based on motion capture data from a single healthy male subject. Preliminary kinematic evaluation shows that the designed passive KAFO is capable of supporting flexion and extension of the knee joint during stance and swing phases of walking. The two-step design procedure for the KAFO consists of (1) computational synthesis based on user's motion data and (2) performance optimization. In the computational synthesis step, first the lower leg (knee-ankle-foot) of the subject is approximated as a 2R kinematic chain and its target trajectories are specified from motion capture data. Six-bar linkages are synthesized to coordinate the angular movements of knee and ankle joints of the 2R chain at 11 accuracy points. The first step of the design procedure yields 332 six-bar KAFO design candidates. This is followed by a performance optimization step in which the KAFO design candidates are optimally modified to satisfy specified constraints on end-effector trajectory and shape. This two-step process yields an optimally designed passive six-bar KAFO that shows promising kinematic results at the knee joint of the user during walking. The preliminary prototype manufactured is cost effective, easy to operate, and suitably demonstrates the feasibility of the proposed concept.

References

1.
Yakimovich
,
T.
,
Lemaire
,
E. D.
, and
Kofman
,
J.
,
2006
, “
Preliminary Kinematic Evaluation of a New Stance-Control Knee-Ankle-Foot Orthosis
,”
Clin. Biomech.
,
21
(
10
), pp.
1081
1089
.10.1016/j.clinbiomech.2006.06.008
2.
Probsting
,
E.
,
Kannenberg
,
A.
, and
Zacharias
,
B.
,
2017
, “
Safety and Walking Ability of KAFO Users With the C-Brace® Orthotronic Mobility System, A New Microprocessor Stance and Swing Control Orthosis
,”
Prosthet. Orthotics Int.
,
41
(
1
), pp.
65
77
.10.1177/0309364616637954
3.
Rafiaei
,
M.
,
Bahramizadeh
,
M.
,
Arazpour
,
M.
,
Samadian
,
M.
,
Hutchins
,
S. W.
,
Farahmand
,
F.
, and
Mardani
,
M. A.
,
2016
, “
The Gait and Energy Efficiency of Stance Control Knee–Ankle–Foot Orthoses: A Literature Review
,”
Prosthet. Orthotics Int.
,
40
(
2
), pp.
202
214
.10.1177/0309364615588346
4.
McDaid
,
C.
,
Fayter
,
D.
,
Booth
,
A.
,
O'Connor
,
J.
,
Rodriguez-Lopez
,
R.
,
McCaughan
,
D.
,
Bowers
,
R.
,
Iglesias
,
C. P.
,
Lalor
,
S.
,
O'Connor
,
R. J.
,
Phillips
,
M.
, and
Ramdharry
,
G.
,
2017
, “
Systematic Review of the Evidence on Orthotic Devices for the Management of Knee Instability Related to Neuromuscular and Central Nervous System Disorders
,”
BMJ Open
,
7
(
9
), p.
e015927
.10.1136/bmjopen-2017-015927
5.
Yakimovich
,
T.
,
Lemaire
,
E. D.
, and
Kofman
,
J.
,
2009
, “
Engineering Design Review of Stance-Control Knee-Ankle-Foot Orthoses
,”
J. Rehabil. Res. Dev.
,
46
(
2
), pp.
257
267
.10.1682/JRRD.2008.02.0024
6.
Tian
,
F.
,
Hefzy
,
M. S.
, and
Elahinia
,
M.
,
2015
, “
State of the Art Review of Knee–Ankle–Foot Orthoses
,”
Ann. Biomed. Eng.
,
43
(
2
), pp.
427
441
.10.1007/s10439-014-1217-z
7.
McMillan
,
A. G.
,
Kendrick
,
K.
,
Michael
,
J. W.
,
Aronson
,
J.
, and
Horton
,
G. W.
,
2004
, “
Preliminary Evidence for Effectiveness of a Stance Control Orthosis
,”
JPO J. Prosthet. Orthotics
,
16
(
1
), pp.
6
13
.10.1097/00008526-200401000-00004
8.
Berkelman
,
P.
,
Rossi
,
P.
,
Lu
,
T.
, and
Ma
,
J.
,
2007
, “
Passive Orthosis Linkage for Locomotor Rehabilitation
,”
IEEE 10th International Conference on Rehabilitation Robotics
,
ICORR 2007
, Noordwijk, The Netherlands, June 13–15, pp.
425
431
.10.1109/ICORR.2007.4428460
9.
Agrawal
,
S. K.
,
Banala
,
S. K.
,
Fattah
,
A.
,
Sangwan
,
V.
,
Krishnamoorthy
,
V.
,
Scholz
,
J. P.
, and
Hsu
,
W.
,
2007
, “
Assessment of Motion of a Swing Leg and Gait Rehabilitation With a Gravity Balancing Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
410
420
.10.1109/TNSRE.2007.903930
10.
Ji
,
Z.
, and
Manna
,
Y.
,
2008
, “
Synthesis of a Pattern Generation Mechanism for Gait Rehabilitation
,”
ASME J. Med. Devices
,
2
(
3
), p.
031004
.10.1115/1.2975964
11.
Tsuge
,
B. Y.
, and
McCarthy
,
J. M.
,
2015
, “
Synthesis of a 10-Bar Linkage to Guide the Gait Cycle of the Human Leg
,”
ASME
Paper No. DETC2015-47723.10.1115/DETC2015-47723
12.
Shao
,
Y.
,
Xiang
,
Z.
,
Liu
,
H.
, and
Li
,
L.
,
2016
, “
Conceptual Design and Dimensional Synthesis of Cam-Linkage Mechanisms for Gait Rehabilitation
,”
Mech. Mach. Theory
,
104
, pp.
31
42
.10.1016/j.mechmachtheory.2016.05.018
13.
Bapat
,
G. M.
, and
Sujatha
,
S.
,
2017
, “
A Method for Optimal Synthesis of a Biomimetic Four-Bar Linkage Knee Joint for a Knee-Ankle-Foot Orthosis
,”
J. Biomimetics, Biomater. Biomed. Eng.
,
32
, pp.
20
28
.10.4028/www.scientific.net/JBBBE.32.20
14.
Foster
,
R.
, and
Milani
,
J.
,
1979
, “
The Genucentric Knee Orthosis - A New Concept
,”
Orthotics Prosthet.
,
33
(
2
), pp.
31
44
.http://www.oandplibrary.org/op/1979_02_031.asp
15.
Walker
,
P.
,
Kurosawa
,
H.
,
Rovick
,
J.
, and
Zimmerman
,
R.
,
1985
, “
External Knee Joint Design Based on Normal Motion
,”
J. Rehabil. Res. Dev.
,
22
(
1
), pp.
9
22
.10.1682/JRRD.1985.01.0009
16.
Townsend
,
J.
, and
Knecht
,
S.
,
2004
, “
Tension Assisted Ankle Joint and Orthotic Limb Braces Incorporating Same
,” U.S. Patent No. 6,752,774.
17.
Radcliffe
,
C.
,
1994
, “
Four-Bar Linkage Prosthetic Knee Mechanisms: Kinematics, Alignment and Prescription Criteria
,”
Prosthetics Orthotics Int.
,
18
(
3
), pp.
159
173
.10.3109/03093649409164401
18.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Computational Design of Stephenson II Six-Bar Function Generators for 11 Accuracy Points
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011017
.10.1115/1.4031124
19.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Controlling the Movement of a TRR Spatial Chain With Coupled Six-Bar Function Generators for Biomimetic Motion
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051005
.10.1115/1.4032105
20.
Ghosh
,
S.
,
Robson
,
N.
, and
McCarthy
,
J.
,
2017
, “
Design of Wearable Lower Leg Orthotic Based on Six-Bar Linkage
,”
ASME
Paper No. DETC2017-67837.10.1115/DETC2017-67837
21.
Smaili
,
A. A.
,
Diab
,
N. A.
, and
Atallah
,
N. A.
,
2005
, “
Optimum Synthesis of Mechanisms Using Tabu-Gradient Search Algorithm
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
917
923
.10.1115/1.1904640
22.
Tsuge
,
B. Y.
,
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Homotopy Directed Optimization to Design a Six-Bar Linkage for a Lower Limb With a Natural Ankle Trajectory
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061009
.10.1115/1.4034141
23.
Dibakar
,
S.
, and
Mruthyunjaya
,
T.
,
1999
, “
Synthesis of Workspaces of Planar Manipulators With Arbitrary Topology Using Shape Representation and Simulated Annealing
,”
Mech. Mach. Theory
,
34
(
3
), pp.
391
420
.10.1016/S0094-114X(98)00045-7
24.
Robson
,
N.
, and
Ghosh
,
S.
,
2016
, “
Geometric Design of Planar Mechanisms Based on Virtual Guides for Manipulation
,”
Robotica
,
34
(
12
), pp.
2653
2668
.10.1017/S0263574715000272
25.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
SIAM Press
, Philadelphia, PA.
26.
Ghosh
,
S.
,
Robson
,
N.
, and
McCarthy
,
J.
,
2017
, “
Development of Customized Orthotics Based on Lower-Leg Anthropometric Data and Task
,”
International Conference on Applied Human Factors and Ergonomics
,
Springer
, Los Angeles, CA, July 17–21, pp.
54
63
.10.1007/978-3-319-60639-2_6
27.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
, John
Wiley & Sons
, Hoboken, NJ.
28.
Wolfram
,
S.
,
2003
,
The Mathematica Book
, 5th ed.,
Wolfram Media
, Champaign, IL.
You do not currently have access to this content.