Abstract

Microwave ablation (MWA) is a newly developed minimally invasive tumor therapy which possesses several advantages over the existing thermal therapies. Despite the several advantages, MWA also suffers same disadvantages similar to other thermal therapies like poor control over ablation volume. Sensitivity of different tissue parameters is the key factor to design a MWA protocol. In this work, sensitivity analysis has been conducted to quantify the effect of three cancerous breast parameters, viz., breast composition, tumor location, and tumor size, on the efficacy of MWA of breast cancer. Ablation volume has been taken as the indicator of the ablation efficacy during MWA procedure. A Taguchi's design of experimental approach has been utilized to optimize the number of simulations required for the analysis and then analysis of variance (ANOVA) has been performed to predict the most sensitive parameter along with their individual contribution. Finite element approach-based simulations have been performed in a multiphysics software. First, a grid-independent study has been established to optimize the number of mesh elements and to reduce the computational cost. Then, after finding the most optimum grid size, all the simulations have been performed in accordance with the protocol obtained from Taguchi's design of experiment approach and finally statistical analysis software has been used for analyzing Taguchi's design. It has been found that, the breast composition to be the most significant factor, with maximum contribution in ablation volume, among three considered factors followed by tumor location and tumor size, respectively.

References

1.
Simon
,
C. J.
,
Dupuy
,
D. E.
, and
Mayo-Smith
,
W. W.
,
2005
, “
Microwave Ablation: Principles and Applications
,”
Radiographics
,
25
(
suppl_1
), pp.
S69
S83
.10.1148/rg.25si055501
2.
Brace
,
C. L.
,
2010
, “
Microwave Tissue Ablation: Biophysics, Technology, and Applications
,”
Crit. Rev. Biomed. Eng.
,
38
(
1
), pp.
65
78
.10.1615/CritRevBiomedEng.v38.i1.60
3.
Skinner
,
M. G.
,
Iizuka
,
M. N.
,
Kolios
,
M. C.
, and
Sherar
,
M. D.
,
1998
, “
A Theoretical Comparison of Energy Sources-Microwave, Ultrasound and Laser-for Interstitial Thermal Therapy
,”
Phys. Med. Biol.
,
43
(
12
), pp.
3535
3547
.10.1088/0031-9155/43/12/011
4.
Carrafiello
,
G.
,
Laganà
,
D.
,
Mangini
,
M.
,
Fontana
,
F.
,
Dionigi
,
G.
,
Boni
,
L.
,
Rovera
,
F.
,
Cuffari
,
S.
, and
Fugazzola
,
C.
,
2008
, “
Microwave Tumors Ablation: Principles, Clinical Applications and Review of Preliminary Experiences
,”
Int. J. Surg.
,
6
, pp.
S65
S69
.10.1016/j.ijsu.2008.12.028
5.
Brace
,
C. L.
,
Hinshaw
,
J. L.
,
Laeseke
,
P. F.
,
Sampson
,
L. A.
, and
Lee
,
F. T.
, Jr.
,
2009
, “
Pulmonary Thermal Ablation: Comparison of Radiofrequency and Microwave Devices by Using Gross Pathologic and CT Findings in a Swine Model
,”
Radiology
,
251
(
3
), pp.
705
711
.10.1148/radiol.2513081564
6.
Little
,
M. W.
,
Chung
,
D.
,
Boardman
,
P.
,
Gleeson
,
F. V.
, and
Anderson
,
E. M.
,
2013
, “
Microwave Ablation of Pulmonary Malignancies Using a Novel High-Energy Antenna System
,”
Cardiovasc. Intervent. Radiol.
,
36
(
2
), pp.
460
465
.10.1007/s00270-012-0465-2
7.
Poulou
,
L. S.
,
Botsa
,
E.
,
Thanou
,
I.
,
Ziakas
,
P. D.
, and
Thanos
,
L.
,
2015
, “
Percutaneous Microwave Ablation versus Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma
,”
World J. Hepatol.
,
7
(
8
), p.
1054
.10.4254/wjh.v7.i8.1054
8.
Brace
,
C. L.
,
2009
, “
Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?
Curr. Prob. Diagn. Radiol.
,
38
(
3
), pp.
135
143
.10.1067/j.cpradiol.2007.10.001
9.
Yu
,
J.
,
Chen
,
B. H.
,
Zhang
,
J.
,
Han
,
Z. Y.
,
Wu
,
H.
,
Huang
,
Y.
,
Mu
,
M. J.
, and
Liang
,
P.
,
2017
, “
Ultrasound Guided Percutaneous Microwave Ablation of Benign Breast Lesions
,”
Oncotarget
,
8
(
45
), p.
79376
.10.18632/oncotarget.18123
10.
Akimov
,
A. B.
,
Seregin
,
V. E.
,
Rusanov
,
K. V.
,
Tyurina
,
E. G.
,
Glushko
,
T. A.
,
Nevzorov
,
V. P.
,
Nevzorova
,
O. F.
, and
Akimova
,
E. V.
,
1998
, “
Nd: YAG Interstitial Laser Thermotherapy in the Treatment of Breast Cancer
,”
Lasers Surg. Med.
,
22
(
5
), pp.
257
267
.10.1002/(SICI)1096-9101(1998)22:5<257::AID-LSM1>3.0.CO;2-O
11.
Abe
,
H.
,
Kurumi
,
Y.
,
Naka
,
S.
,
Shiomi
,
H.
,
Umeda
,
T.
,
Naitoh
,
H.
,
Endo
,
Y.
,
Hanasawa
,
K.
,
Morikawa
,
S.
, and
Tani
,
T.
,
2005
, “
Open-Configuration MR-Guided Microwave Thermocoagulation Therapy for Metastatic Liver Tumors From Breast Cancer
,”
Breast Cancer
,
12
(
1
), pp.
26
31
.10.2325/jbcs.12.26
12.
Ibitoye
,
A. Z.
,
Orotoye
,
T.
,
Nwoye
,
E. O.
, and
Aweda
,
M. A.
,
2018
, “
Analysis of Efficiency of Different Antennas for Microwave Ablation Using Simulation and Experimental Methods
,”
Egypt. J. Basic Appl. Sci.
,
5
(
1
), pp.
24
30
.10.1016/j.ejbas.2018.01.005
13.
Joines
,
W. T.
,
Zhang
,
Y.
,
Li
,
C.
, and
Jirtle
,
R. L.
,
1994
, “
The Measured Electrical Properties of Normal and Malignant Human Tissues From 50 to 900 MHz
,”
Med. Phys.
,
21
(
4
), pp.
547
550
.10.1118/1.597312
14.
Campbell
,
A. M.
, and
Land
,
D. V.
,
1992
, “
Dielectric Properties of Female Human Breast Tissue Measured In Vitro at 3.2 GHz
,”
Phys. Med. Biol.
,
37
(
1
), pp.
193
210
.10.1088/0031-9155/37/1/014
15.
Xu
,
J.
,
Wu
,
H.
,
Han
,
Z.
,
Zhang
,
J.
,
Li
,
Q.
,
Dou
,
J.
,
An
,
C.
,
Qi
,
E.
,
Yu
,
J.
, and
Liang
,
P.
,
2018
, “
Microwave Ablation of Benign Breast Tumors: A Prospective Study With Minimum 12 Months Follow-Up
,”
Int. J. Hypertherm.
,
35
(
1
), pp.
1
9
.10.1080/02656736.2018.1494340
16.
Chiang
,
J.
,
Wang
,
P.
, and
Brace
,
C. L.
,
2013
, “
Computational Modelling of Microwave Tumor Ablations
,”
Int. J. Hypertherm.
,
29
(
4
), pp.
308
317
.10.3109/02656736.2013.799295
17.
Lopresto
,
V.
,
Pinto
,
R.
,
Lovisolo
,
G. A.
, and
Cavagnaro
,
M.
,
2012
, “
Changes in the Dielectric Properties of Ex Vivo Bovine Liver During Microwave Thermal Ablation at 2.45 GHz
,”
Phys. Med. Biol.
,
57
(
8
), pp.
2309
2327
.10.1088/0031-9155/57/8/2309
18.
Colebeck
,
E.
,
Asili
,
M.
,
Green
,
R.
, and
Topsakal
,
E.
,
2013
, “
The Effect of Temperature on the Microwave Dielectric Properties of Porcine Liver, Lung, and Heart
,”
Radio Science Meeting
(
USNC-URSI NRSM
), 2013 US National
Committee URSI National
, Boulder, CO, Jan. 9–12, p.
1
.10.1109/USNC-URSI-NRSM.2013.6525131
19.
Kim
,
C.
,
2018
, “
Understanding the Nuances of Microwave Ablation for More Accurate Post-Treatment Assessment
,”
Fut. Oncol.
,
14
(
17
), pp.
1755
1764
.10.2217/fon-2017-0736
20.
Karampatzakis
,
A.
,
Kühn
,
S.
,
Tsanidis
,
G.
,
Neufeld
,
E.
,
Samaras
,
T.
, and
Kuster
,
N.
,
2013
, “
Heating Characteristics of Antenna Arrays Used in Microwave Ablation: A Theoretical Parametric Study
,”
Comput. Biol. Med.
,
43
(
10
), pp.
1321
1327
.10.1016/j.compbiomed.2013.07.013
21.
Rubio
,
M. F. J. C.
,
López
,
G. D. G.
,
Perezgasga
,
F. V.
,
García
,
F. F.
,
Hernández
,
A. V.
, and
Salas
,
L. L.
,
2015
, “
Computer Modeling for Microwave Ablation in Breast Cancer Using a Coaxial Slot Antenna
,”
Int. J. Thermophys.
,
36
(
10–11
), pp.
2687
2704
.10.1007/s10765-015-1931-2
22.
Splatt
,
A. M.
, and
Steinke
,
K.
,
2015
, “
Major Complications of High Energy Microwave Ablation for Percutaneous CT-Guided Treatment of Lung Malignancies: Single-Centre Experience After 4 Years
,”
J. Med. Imag. Rad. Oncol.
,
59
(
5
), pp.
609
616
.10.1111/1754-9485.12345
23.
Singh
,
S.
, and
Repaka
,
R.
,
2018
, “
Parametric Sensitivity Analysis of Critical Factors Affecting the Thermal Damage During RFA of Breast Tumor
,”
Int. J. Therm. Sci.
,
124
, pp.
366
374
.10.1016/j.ijthermalsci.2017.10.032
24.
Ekstrand
,
V.
,
Wiksell
,
H.
,
Schultz
,
I.
,
Sandstedt
,
B.
,
Rotstein
,
S.
, and
Eriksson
,
A.
,
2005
, “
Influence of Electrical and Thermal Properties on RF Ablation of Breast Cancer: Is the Tumor Preferentially Heated?
Biomed. Eng. Online
,
4
(
1
), p.
41
.10.1186/1475-925X-4-41
25.
Cavagnaro
,
M.
,
Pinto
,
R.
, and
Lopresto
,
V.
,
2015
, “
Numerical Models to Evaluate the Temperature Increase Induced by Ex Vivo Microwave Thermal Ablation
,”
Phys. Med. Biol.
,
60
(
8
), pp.
3287
3311
.10.1088/0031-9155/60/8/3287
26.
Sebek
,
J.
,
Albin
,
N.
,
Bortel
,
R.
,
Natarajan
,
B.
, and
Prakash
,
P.
,
2016
, “
Sensitivity of Microwave Ablation Models to Tissue Biophysical Properties: A First Step Toward Probabilistic Modeling and Treatment Planning
,”
Med. Phys.
,
43
(
5
), pp.
2649
2661
.10.1118/1.4947482
27.
Lopresto
,
V.
,
Pinto
,
R.
,
Farina
,
L.
, and
Cavagnaro
,
M.
,
2017
, “
Treatment Planning in Microwave Thermal Ablation: Clinical Gaps and Recent Research Advances
,”
Int. J. Hypertherm.
,
33
(
1
), pp.
83
100
.10.1080/02656736.2016.1214883
28.
Xu
,
Y.
,
Moser
,
M. A.
,
Zhang
,
E.
,
Zhang
,
W.
, and
Zhang
,
B.
,
2019
, “
Large and Round Ablation Zones With Microwave Ablation: A Preliminary Study of an Optimal Aperiodic Tri-Slot Coaxial Antenna With the π-Matching Network Section
,”
Int. J. Therm. Sci.
,
140
, pp.
539
548
.10.1016/j.ijthermalsci.2019.03.022
29.
Gabriel
,
C.
,
1996
, “
Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies
,” Final Technical Report for Period 15 December 1994 to 14 December 1995, Department of Physics, King's College London, UK.
30.
Wang
,
Z.
,
Aarya
,
I.
,
Gueorguieva
,
M.
,
Liu
,
D.
,
Luo
,
H.
,
Manfredi
,
L.
,
Wang
,
L.
,
McLean
,
D.
,
Coleman
,
S.
,
Brown
,
S.
, and
Cuschieri
,
A.
,
2012
, “
Image-Based 3D Modeling and Validation of Radiofrequency Interstitial Tumor Ablation Using a Tissue-Mimicking Breast Phantom
,”
Int. J. Comput. Assist. Rad. Surg.
,
7
(
6
), pp.
941
948
.10.1007/s11548-012-0769-3
31.
Ng
,
E. Y. K.
, and
Sudharsan
,
N. M.
,
2001
, “
An Improved Three-Dimensional Direct Numerical Modelling and Thermal Analysis of a Female Breast With Tumor
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
215
(
1
), pp.
25
37
.10.1243/0954411011533508
32.
Wahab
,
A. A.
,
Salim
,
M. I. M.
,
Ahamat
,
M. A.
,
Manaf
,
N. A.
,
Yunus
,
J.
, and
Lai
,
K. W.
,
2016
, “
Thermal Distribution Analysis of Three-Dimensional Tumor-Embedded Breast Models With Different Breast Density Compositions
,”
Med. Biol. Eng. Comput.
,
54
(
9
), pp.
1363
1373
.10.1007/s11517-015-1403-7
33.
Makarov
,
S. N.
,
Noetscher
,
G. M.
,
Yanamadala
,
J.
,
Piazza
,
M. W.
,
Louie
,
S.
,
Prokop
,
A.
,
Nazarian
,
A.
, and
Nummenmaa
,
A.
,
2017
, “
Virtual Human Models for Electromagnetic Studies and Their Applications
,”
IEEE Rev. Biomed. Eng.
,
10
, pp.
95
121
.10.1109/RBME.2017.2722420
34.
López
,
G.
,
David
,
G.
,
Cepeda
,
R. M. F. J.
,
Hernández
,
J. J. I.
,
Vera
,
H. A.
,
Leija
,
S. L.
,
Valdés
,
P. F.
, and
Flores
,
G. F.
,
2017
, “
Computational FEM Model, Phantom and Ex Vivo Swine Breast Validation of an Optimized Double-Slot Microcoaxial Antenna Designed for Minimally Invasive Breast Tumor Ablation: Theoretical and Experimental Comparison of Temperature, Size of Lesion, and SWR, Preliminary Data
,”
Comput. Math. Meth. Med.
,
2017
, pp.
68
78
.10.1155/2017/1562869
35.
Hasgall, P. A., Di Gennaro, F., Baumgartner, C., Neufeld, E., Lloyd, B., Gosselin, M. C., Payne, D., Klingenböck, A., and Kuster, N., 2018, “IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues,” Version 4.0, accessed Feb. 10, 2020, https://itis.swiss/database
36.
Lazebnik
,
M.
,
Popovic
,
D.
,
McCartney
,
L.
,
Watkins
,
C. B.
,
Lindstrom
,
M. J.
,
Harter
,
J.
,
Sewall
,
S.
,
Ogilvie
,
T.
,
Magliocco
,
A.
,
Breslin
,
T. M.
,
Temple
,
W.
,
Mew
,
D.
,
Booske
,
J. H.
,
Okoniewski
,
M.
, and
Hagness
,
S. C.
,
2007
, “
A Large-Scale Study of the Ultrawideband Microwave Dielectric Properties of Normal, Benign and Malignant Breast Tissues Obtained From Cancer Surgeries
,”
Phys. Med. Biol.
,
52
(
20
), pp.
6093
6115
.10.1088/0031-9155/52/20/002
37.
Bertram
,
J. M.
,
Yang
,
D.
,
Converse
,
M. C.
,
Webster
,
J. G.
, and
Mahvi
,
D. M.
,
2006
, “
Antenna Design for Microwave Hepatic Ablation Using an Axisymmetric Electromagnetic Model
,”
Biomed. Eng. Online
,
5
(
1
), p.
15
10.1186/1475-925X-5-15
38.
Bertram
,
J. M.
,
Yang
,
D.
,
Converse
,
M. C.
,
Webster
,
J. G.
, and
Mahvi
,
D. M.
,
2006
, “
A Review of Coaxial-Based Interstitial Antennas for Hepatic Microwave Ablation
,”
Crit. Rev. Biomed. Eng.
,
34
(
3
), pp.
187
213
.10.1615/critrevbiomedeng.v34.i3.10
39.
Saito, K., Taniguchi, T., Yoshimura, H., and Ito, K., 2001, “Estimation of SAR Distribution of a Tip-Split Array Applicator for Microwave Coagulation Therapy Using the Finite Element Method,” IEICE Trans. Electronics, E84-C(7), pp. 948–954.
40.
Gautherie
,
M.
,
1980
, “
Thermopathology of Breast Cancer: Measurement and Analysis of In Vivo Temperature and Blood Flow
,”
Ann. New York Acad. Sci.
,
335
(
1
), pp.
383
415
.10.1111/j.1749-6632.1980.tb50764.x
41.
Pusceddu
,
C.
,
Melis
,
L.
,
Sotgia
,
B.
,
Guerzoni
,
D.
,
Porcu
,
A.
, and
Fancellu
,
A.
,
2019
, “
Usefulness of Percutaneous Microwave Ablation for Large Non-Small Cell Lung Cancer: A Preliminary Report
,”
Onco. Lett.
,
18
(
1
), pp.
659
666
.10.3892/ol.2019.10375
42.
Singh, S., Repaka, R., and Al-Jumaily, A., 2019, “Sensitivity Analysis of Critical Parameters Affecting the Efficacy of Microwave Ablation Using Taguchi Method,”
Int. J. RF Microw Comput. Aided Eng.
,
29
(4), p. e21581.10.1002/mmce.21581
43.
Maghsoodloo
,
S.
,
Ozdemir
,
G.
,
Jordan
,
V.
, and
Huang
,
C. H.
,
2004
, “
Strengths and Limitations of Taguchi's Contributions to Quality, Manufacturing, and Process Engineering
,”
J. Manuf. Syst.
,
23
(
2
), pp.
73
126
.10.1016/S0278-6125(05)00004-X
44.
Jamil, M., and Ng, E. Y. K., 2015, “Quantification of the Effect of Electrical and Thermal Parameters on Radiofrequency Ablation for Concentric Tumor Model of Different Sizes,”
J. Therm. Biol.
,
51
, pp. 23–32.10.1016/j.jtherbio.2015.03.002
You do not currently have access to this content.