Abstract

Changes in aortic flow characteristics have previously been linked with cardiovascular disease (CVD). The purpose of the study is to determine the effects of heart rate (HR), cardiac output (CO), and the temporal flow profile on retrograde flow and wall shear stress (WSS) in the thoracic aorta. Pulsatile flow in a human thoracic aorta model was simulated for eleven combinations of HR (60–150 beats per minutes, BPM), CO and temporal flow profiles. Retrograde flow and WSS effects were characterized with common biomechanical metrics along with new markers. The results underpin the importance of temporal variation of the cardiac flow rate and the impact of the deceleration phase of systole and diastole on retrograde flow. During retrograde flow, the near-wall region may be stagnant (with low WSS) at low HR. At high HR, the WSS increases and becomes oscillatory in space and time. This finding may explain the clinical observation that increasing HR is associated with risk for CVD.

References

1.
Iwata
,
S.
,
Jin
,
Z.
,
Schwartz
,
J. E.
,
Homma
,
S.
,
Elkind
,
M. S.
,
Rundek
,
T.
,
Sacco
,
R. L.
, and
Di Tullio
,
M. R.
,
2012
, “
Relationship Between Ambulatory Blood Pressure and Aortic Arch Atherosclerosis
,”
Atherosclerosis
,
221
(
2
), pp.
427
431
.10.1016/j.atherosclerosis.2012.01.010
2.
Binter
,
C.
,
Gülan
,
U.
,
Holzner
,
M.
, and
Kozerke
,
S.
,
2016
, “
On the Accuracy of Viscous and Turbulent Loss Quantification in Stenotic Aortic Flow Using Phase‐Contrast MRI
,”
Magn. Reson. Med.
,
76
(
1
), pp.
191
196
.10.1002/mrm.25862
3.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.10.1016/j.jbiomech.2003.09.016
4.
Giannoglou
,
G. D.
,
Chatzizisis
,
Y. S.
,
Zamboulis
,
C.
,
Parcharidis
,
G. E.
,
Mikhailidis
,
D. P.
, and
Louridas
,
G. E.
,
2008
, “
Elevated Heart Rate and Atherosclerosis: An Overview of the Pathogenetic Mechanisms
,”
Int. J. Cardiol.
,
126
(
3
), pp.
302
312
.10.1016/j.ijcard.2007.08.077
5.
Dominguez-Rodriguez
,
A.
,
Blanco-Palacios
,
G.
, and
Abreu-Gonzalez
,
P.
,
2011
, “
Increased Heart Rate and Atherosclerosis: Potential Implications of Ivabradine Therapy
,”
World J. Cardiol.
,
3
(
4
), pp.
101
104
.10.4330/wjc.v3.i4.101
6.
Tadic
,
M.
,
Cuspidi
,
C.
, and
Grassi
,
G.
,
2018
, “
Heart Rate as a Predictor of Cardiovascular Risk
,”
Eur. J. Clin. Invest.
,
48
(
3
), p.
e12892
.10.1111/eci.12892
7.
Taku
,
I.
, and
Yusuke
,
O.
,
2011
, “
Elevated Heart Rate, a Risk Factor and Risk Marker of Cardiovascular Disease
,”
Curr. Hypertens. Rev.
,
7
(
1
), pp.
29
40
.
8.
Souilhol
,
C.
,
Serbanovic-Canic
,
J.
,
Fragiadaki
,
M.
,
Chico
,
T. J.
,
Ridger
,
V.
,
Roddie
,
H.
, and
Evans
,
P. C.
,
2020
, “
Endothelial Responses to Shear Stress in Atherosclerosis: A Novel Role for Developmental Genes
,”
Nat. Rev. Cardiol.
,
17
(
1
), pp.
52
63
.10.1038/s41569-019-0239-5
9.
Cheng
,
C.
,
Tempel
,
D.
,
van Haperen
,
R.
,
van der Baan
,
A.
,
Grosveld
,
F.
,
Daemen
,
M. J.
,
Krams
,
R.
, and
de Crom
,
R.
,
2006
, “
Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress
,”
Circulation
,
113
(
23
), pp.
2744
2753
.10.1161/CIRCULATIONAHA.105.590018
10.
Pedrigi
,
R. M.
,
Mehta
,
V. V.
,
Bovens
,
S. M.
,
Mohri
,
Z.
,
Poulsen
,
C. B.
,
Gsell
,
W.
,
Tremoleda
,
J. L.
,
Towhidi
,
L.
,
de Silva
,
R.
,
Petretto
,
E.
, and
Krams
,
R.
,
2016
, “
Influence of Shear Stress Magnitude and Direction on Atherosclerotic Plaque Composition
,”
R. Soc. Open Sci.
,
3
(
10
), p.
160588
.10.1098/rsos.160588
11.
Gijsen
,
F.
,
Katagiri
,
Y.
,
Barlis
,
P.
,
Bourantas
,
C.
,
Collet
,
C.
,
Coskun
,
U.
,
Daemen
,
J.
,
et al.
,
2019
, “
Expert Recommendations on the Assessment of Wall Shear Stress in Human Coronary Arteries: Existing Methodologies, Technical Considerations, and Clinical Applications
,”
Eur. Heart J.
,
40
(
41
), pp.
3421
3433
.10.1093/eurheartj/ehz551
12.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
13.
White
,
S. J.
,
Hayes
,
E. M.
,
Lehoux
,
S.
,
Jeremy
,
J. Y.
,
Horrevoets
,
A. J.
, and
Newby
,
A. C.
,
2011
, “
Characterization of the Differential Response of Endothelial Cells Exposed to Normal and Elevated Laminar Shear Stress
,”
J. Cell Physiol.
,
226
(
11
), pp.
2841
2848
.10.1002/jcp.22629
14.
Andersson
,
M.
,
Ebbers
,
T.
, and
Karlsson
,
M.
,
2019
, “
Characterization and Estimation of Turbulence-Related Wall Shear Stress in Patient-Specific Pulsatile Blood Flow
,”
J. Biomech.
,
85
, pp.
108
117
.10.1016/j.jbiomech.2019.01.016
15.
Pirola
,
S.
,
Jarral
,
O. A.
,
O'Regan
,
D. P.
,
Asimakopoulos
,
G.
,
Anderson
,
J. R.
,
Pepper
,
J. R.
,
Athanasiou
,
T.
, and
Xu
,
X. Y.
,
2018
, “
Computational Study of Aortic Hemodynamics for Patients With an Abnormal Aortic Valve: The Importance of Secondary Flow at the Ascending Aorta Inlet
,”
APL Bioeng.
,
2
(
2
), pp.
026101
026101
.10.1063/1.5011960
16.
Youssefi
,
P.
,
Gomez
,
A.
,
Arthurs
,
C.
,
Sharma
,
R.
,
Jahangiri
,
M.
, and
Alberto Figueroa
,
C.
,
2018
, “
Impact of Patient-Specific Inflow Velocity Profile on Hemodynamics of the Thoracic Aorta
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011002
.10.1115/1.4037857
17.
Condemi
,
F.
,
Campisi
,
S.
,
Viallon
,
M.
,
Troalen
,
T.
,
Xuexin
,
G.
,
Barker
,
A. J.
,
Markl
,
M.
,
et al.
,
2017
, “
Fluid- and Biomechanical Analysis of Ascending Thoracic Aorta Aneurysm With Concomitant Aortic Insufficiency
,”
Ann. Biomed. Eng.
,
45
(
12
), pp.
2921
2932
.10.1007/s10439-017-1913-6
18.
De Nisco
,
G.
,
Zhang
,
P.
,
Calò
,
K.
,
Liu
,
X.
,
Ponzini
,
R.
,
Bignardi
,
C.
,
Rizzo
,
G.
,
Deng
,
X.
,
Gallo
,
D.
, and
Morbiducci
,
U.
,
2018
, “
What is Needed to Make Low-Density Lipoprotein Transport in Human Aorta Computational Models Suitable to Explore Links to Atherosclerosis? Impact of Initial and Inflow Boundary Conditions
,”
J. Biomech.
,
68
, pp.
33
42
.10.1016/j.jbiomech.2017.12.009
19.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.10.1080/10255840903413565
20.
Zhu
,
Y.
,
Chen
,
R.
,
Juan
,
Y.-H.
,
Li
,
H.
,
Wang
,
J.
,
Yu
,
Z.
, and
Liu
,
H.
,
2018
, “
Clinical Validation and Assessment of Aortic Hemodynamics Using Computational Fluid Dynamics Simulations From Computed Tomography Angiography
,”
BioMed. Eng. OnLine
,
17
(
1
), p.
53
.10.1186/s12938-018-0485-5
21.
Lantz
,
J.
,
Gårdhagen
,
R.
, and
Karlsson
,
M.
,
2012
, “
Quantifying Turbulent Wall Shear Stress in a Subject Specific Human Aorta Using Large Eddy Simulation
,”
Med. Eng. Phys.
,
34
(
8
), pp.
1139
1148
.10.1016/j.medengphy.2011.12.002
22.
Taylor
,
C. A.
,
Cheng
,
C. P.
,
Espinosa
,
L. A.
,
Tang
,
B. T.
,
Parker
,
D.
, and
Herfkens
,
R. J.
,
2002
, “
In Vivo Quantification of Blood Flow and Wall Shear Stress in the Human Abdominal Aorta During Lower Limb Exercise
,”
Ann. Biomed. Eng.
,
30
(
3
), pp.
402
408
.10.1114/1.1476016
23.
Gemignani
,
V.
,
Bianchini
,
E.
,
Faita
,
F.
,
Giannoni
,
M.
,
Pasanisi
,
E.
,
Picano
,
E.
, and
Bombardini
,
T.
,
2008
, “
Assessment of Cardiologic Systole and Diastole Duration in Exercise Stress Tests With a Transcutaneous Accelerometer Sensor
,”
Proceedings of Computers in Cardiology
, Vol. 35, Bologna, Italy, Sept. 14–17, pp.
153
156
.10.1109/CIC.2008.4749000
24.
Munch
,
G. D. W.
,
Svendsen
,
J. H.
,
Damsgaard
,
R.
,
Secher
,
N. H.
,
González-Alonso
,
J.
, and
Mortensen
,
S. P.
,
2014
, “
Maximal Heart Rate Does Not Limit Cardiovascular Capacity in Healthy Humans: Insight From Right Atrial Pacing During Maximal Exercise
,”
J. Physiol.
,
592
(
2
), pp.
377
390
.10.1113/jphysiol.2013.262246
25.
Weissler
,
A. M.
,
Peeler
,
R. G.
, and
Roehll
,
W. H.
, Jr.
,
1961
, “
Relationships Between Left Ventricular Ejection Time, Stroke Volume, and Heart Rate in Normal Individuals and Patients With Cardiovascular Disease
,”
Am. Heart J.
,
62
(
3
), pp.
367
378
.10.1016/0002-8703(61)90403-3
26.
Runte
,
K.
,
Brosien
,
K.
,
Salcher-Konrad
,
M.
,
Schubert
,
C.
,
Goubergrits
,
L.
,
Kelle
,
S.
,
Schubert
,
S.
,
Berger
,
F.
,
Kuehne
,
T.
, and
Kelm
,
M.
,
2019
, “
Hemodynamic Changes During Physiological and Pharmacological Stress Testing in Healthy Subjects, Aortic Stenosis and Aortic Coarctation Patients–a Systematic Review and Meta-Analysis
,”
Front. Cardiovasc. Med.
,
6
, pp.
1
15
.10.3389/fcvm.2019.00043
27.
Hund
,
S. J.
,
Kameneva
,
M. V.
, and
Antaki
,
J. F.
,
2017
, “
A Quasi-Mechanistic Mathematical Representation for Blood Viscosity
,”
Fluids
,
2
(
1
), p.
10
.10.3390/fluids2010010
28.
Quemada
,
D.
,
1978
, “
Rheology of Concentrated Disperse Systems II. A Model for Non-Newtonian Shear Viscosity in Steady Flows
,”
Rheol. Acta
,
17
(
6
), pp.
632
642
.10.1007/BF01522036
29.
Frydrychowicz
,
A.
,
Stalder
,
A. F.
,
Russe
,
M. F.
,
Bock
,
J.
,
Bauer
,
S.
,
Harloff
,
A.
,
Berger
,
A.
,
Langer
,
M.
,
Hennig
,
J.
, and
Markl
,
M.
,
2009
, “
Three-Dimensional Analysis of Segmental Wall Shear Stress in the Aorta by Flow-Sensitive Four-Dimensional-MRI
,”
J. Magn. Reson. Imaging
,
30
(
1
), pp.
77
84
.10.1002/jmri.21790
30.
Rodeheffer
,
R. J.
,
Gerstenblith
,
G.
,
Becker
,
L. C.
,
Fleg
,
J. L.
,
Weisfeldt
,
M. L.
, and
Lakatta
,
E. G.
,
1984
, “
Exercise Cardiac Output is Maintained With Advancing Age in Healthy Human Subjects: Cardiac Dilatation and Increased Stroke Volume Compensate for a Diminished Heart Rate
,”
Circulation
,
69
(
2
), pp.
203
213
.10.1161/01.CIR.69.2.203
31.
Liu
,
X.
,
Fan
,
Y.
,
Deng
,
X.
, and
Zhan
,
F.
,
2011
, “
Effect of non-Newtonian and Pulsatile Blood Flow on Mass Transport in the Human Aorta
,”
J. Biomech.
,
44
(
6
), pp.
1123
1131
.10.1016/j.jbiomech.2011.01.024
32.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis
,”
Ann. Biomed. Eng.
,
26
(
6
), pp.
975
987
.10.1114/1.140
33.
Benim
,
A. C.
,
Nahavandi
,
A.
,
Assmann
,
A.
,
Schubert
,
D.
,
Feindt
,
P.
, and
Suh
,
S. H.
,
2011
, “
Simulation of Blood Flow in Human Aorta With Emphasis on Outlet Boundary Conditions
,”
Appl. Math. Modell.
,
35
(
7
), pp.
3175
3188
.10.1016/j.apm.2010.12.022
34.
van Wyk
,
S.
,
Prahl Wittberg
,
L.
,
Bulusu
,
K. V.
,
Fuchs
,
L.
, and
Plesniak
,
M. W.
,
2015
, “
Non-Newtonian Perspectives on Pulsatile Blood-Analog Flows in a 180 ° Curved Artery Model
,”
Phys. Fluids
,
27
(
7
), p.
071901
.10.1063/1.4923311
35.
Fuchs
,
A.
,
Berg
,
N.
, and
Prahl Wittberg
,
L.
,
2019
, “
Stenosis Indicators Applied to Patient-Specific Renal Arteries Without and With Stenosis
,”
Fluids
,
4
(
1
), p.
26
.10.3390/fluids4010026
36.
Suo
,
J.
,
Oshinski
,
J. N.
, and
Giddens
,
D. P.
,
2008
, “
Blood Flow Patterns in the Proximal Human Coronary Arteries: Relationship to Atherosclerotic Plaque Occurrence
,”
Mol. Cell. Biomech.
,
5
(
1
), pp.
9
18
.10.3970/mcb.2008.005.009.pdf
37.
Chen
,
X.
,
Gao
,
Y.
,
Lu
,
B.
,
Jia
,
X.
,
Zhong
,
L.
,
Kassab
,
G. S.
,
Tan
,
W.
, and
Huo
,
Y.
,
2016
, “
Hemodynamics in Coronary Arterial Tree of Serial Stenoses
,”
PLoS One
,
11
(
9
), p.
e0163715
.10.1371/journal.pone.0163715
38.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
39.
Rikhtegar
,
F.
,
Knight
,
J. A.
,
Olgac
,
U.
,
Saur
,
S. C.
,
Poulikakos
,
D.
,
Marshall
,
W.
, Jr.
,
Cattin
,
P. C.
,
Alkadhi
,
H.
, and
Kurtcuoglu
,
V.
,
2012
, “
Choosing the Optimal Wall Shear Parameter for the Prediction of Plaque location-A Patient-Specific Computational Study in Human Left Coronary Arteries
,”
Atherosclerosis
,
221
(
2
), pp.
432
437
.10.1016/j.atherosclerosis.2012.01.018
40.
Gallo
,
D.
,
De Santis
,
G.
,
Negri
,
F.
,
Tresoldi
,
D.
,
Ponzini
,
R.
,
Massai
,
D.
,
Deriu
,
M. A.
,
Segers
,
P.
,
Verhegghe
,
B.
,
Rizzo
,
G.
, and
Morbiducci
,
U.
,
2012
, “
On the Use of In Vivo Measured Flow Rates as Boundary Conditions for Image-Based Hemodynamic Models of the Human Aorta: Implications for Indicators of Abnormal Flow
,”
Ann. Biomed. Eng.
,
40
(
3
), pp.
729
741
.10.1007/s10439-011-0431-1
41.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2008
, “
Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements
,”
ASAIO J.
,
54
(
1
), pp.
64
72
.10.1097/MAT.0b013e31815d6898
42.
Xenos
,
M.
,
Girdhar
,
G.
,
Alemu
,
Y.
,
Jesty
,
J.
,
Slepian
,
M.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2010
, “
Device Thrombogenicity Emulator (DTE)–Design Optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs
,”
J. Biomech.
,
43
(
12
), pp.
2400
2409
.10.1016/j.jbiomech.2010.04.020
43.
Soares
,
J. S.
,
Sheriff
,
J.
, and
Bluestein
,
D.
,
2013
, “
A Novel Mathematical Model of Activation and Sensitization of Platelets Subjected to Dynamic Stress Histories
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1127
1141
.10.1007/s10237-013-0469-0
44.
Hashimoto
,
J.
, and
Ito
,
S.
,
2013
, “
Aortic Stiffness Determines Diastolic Blood Flow Reversal in the Descending Thoracic Aorta: Potential Implication for Retrograde Embolic Stroke in Hypertension
,”
Hypertension
,
62
(
3
), pp.
542
549
.10.1161/HYPERTENSIONAHA.113.01318
45.
Segadal
,
L.
, and
Matre
,
K.
,
1987
, “
Blood Velocity Distribution in the Human Ascending Aorta
,”
Circulation
,
76
(
1
), pp.
90
100
.10.1161/01.CIR.76.1.90
46.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
,
1993
, “
Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping
,”
Circulation
,
88
(
5
), pp.
2235
2247
.10.1161/01.CIR.88.5.2235
47.
Azarine
,
A.
,
Garçon
,
P.
,
Stansal
,
A.
,
Canepa
,
N.
,
Angelopoulos
,
G.
,
Silvera
,
S.
,
Sidi
,
D.
,
Marteau
,
V.
, and
Zins
,
M.
,
2019
, “
Four-Dimensional Flow MRI: Principles and Cardiovascular Applications
,”
Radiographics
,
39
(
3
), pp.
632
648
.10.1148/rg.2019180091
48.
Saitta
,
S.
,
Guo
,
B.
,
Pirola
,
S.
,
Menichini
,
C.
,
Guo
,
D.
,
Shan
,
Y.
,
Dong
,
Z.
,
Xu
,
X. Y.
, and
Fu
,
W.
,
2021
, “
Qualitative and Quantitative Assessments of Blood Flow on Tears in Type B Aortic Dissection With Different Morphologies
,”
Front. Bioeng. Biotechnol.
,
9
, pp.
1
12
.10.3389/fbioe.2021.742985
49.
Martorell
,
J.
,
Santomá
,
P.
,
Kolandaivelu
,
K.
,
Kolachalama
,
V. B.
,
Melgar-Lesmes
,
P.
,
Molins
,
J. J.
,
Garcia
,
L.
,
Edelman
,
E. R.
, and
Balcells
,
M.
,
2014
, “
Extent of Flow Recirculation Governs Expression of Atherosclerotic and Thrombotic Biomarkers in Arterial Bifurcations
,”
Cardiovasc. Res.
,
103
(
1
), pp.
37
46
.10.1093/cvr/cvu124
50.
Hashimoto
,
J.
, and
Ito
,
S.
,
2010
, “
Pulse Pressure Amplification, Arterial Stiffness, and Peripheral Wave Reflection Determine Pulsatile Flow Waveform of the Femoral Artery
,”
Hypertension
,
56
(
5
), pp.
926
933
.10.1161/HYPERTENSIONAHA.110.159368
51.
Morbiducci
,
U.
,
Gallo
,
D.
,
Cristofanelli
,
S.
,
Ponzini
,
R.
,
Deriu
,
M. A.
,
Rizzo
,
G.
, and
Steinman
,
D. A.
,
2015
, “
A Rational Approach to Defining Principal Axes of Multidirectional Wall Shear Stress in Realistic Vascular Geometries, With Application to the Study of the Influence of Helical Flow on Wall Shear Stress Directionality in Aorta
,”
J. Biomech.
,
48
(
6
), pp.
899
906
.10.1016/j.jbiomech.2015.02.027
52.
Gallo
,
D.
,
Steinman
,
D. A.
, and
Morbiducci
,
U.
,
2016
, “
Insights Into the co-Localization of Magnitude-Based Versus Direction-Based Indicators of Disturbed Shear at the Carotid Bifurcation
,”
J. Biomech.
,
49
(
12
), pp.
2413
2419
.10.1016/j.jbiomech.2016.02.010
53.
Dai
,
G.
,
Kaazempur-Mofrad
,
M. R.
,
Natarajan
,
S.
,
Zhang
,
Y.
,
Vaughn
,
S.
,
Blackman
,
B. R.
,
Kamm
,
R. D.
,
García-Cardeña
,
G.
, and
Gimbrone
,
M. A.
, Jr.
,
2004
, “
Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived From Atherosclerosis-Susceptible and -Resistant Regions of Human Vasculature
,”
Proc. Natl. Acad. Sci. U. S. A.
,
101
(
41
), pp.
14871
14876
.10.1073/pnas.0406073101
54.
Stamou
,
A. C.
,
Radulovic
,
J.
, and
Buick
,
J. M.
,
2021
, “
Investigation of Hemodynamic Markers for Stenosis Development
,”
Eng. Rep.
,
3
(
10
), p.
e12389
.10.1002/eng2.12389
55.
Thurston
,
G. B.
, and
Henderson
,
N. M.
,
2006
, “
Effects of Flow Geometry on Blood Viscoelasticity
,”
Biorheology
,
43
(
6
), pp.
729
746
.https://www.researchgate.net/publication/6650234_Effects_of_flow_geometry_on_blood_viscoelasticty
56.
Hong
,
D.
,
Jaron
,
D.
,
Buerk
,
D. G.
, and
Barbee
,
K. A.
,
2006
, “
Heterogeneous Response of Microvascular Endothelial Cells to Shear Stress
,”
Am. J. Physiol. Heart Circ. Physiol.
,
290
(
6
), pp.
H2498
H2508
.10.1152/ajpheart.00828.2005
57.
Boulware
,
M. J.
, and
Marchant
,
J. S.
,
2008
, “
Timing in Cellular Ca2+ Signaling
,”
Curr. Biol.
,
18
(
17
), pp.
R769
R776
.10.1016/j.cub.2008.07.018
58.
DeStefano
,
J. G.
,
Williams
,
A.
,
Wnorowski
,
A.
,
Yimam
,
N.
,
Searson
,
P. C.
, and
Wong
,
A. D.
,
2017
, “
Real-Time Quantification of Endothelial Response to Shear Stress and Vascular Modulators
,”
Integr. Biol. (Camb)
,
9
(
4
), pp.
362
374
.10.1039/C7IB00023E
You do not currently have access to this content.