Abstract

A suitable scaffold architecture is always desirable to get a favorable tissue response for bone tissue engineering. In this regard, a fluid–structure interaction (FSI) analysis was carried out on different porous scaffolds to observe the in vitro mechanical responses due to fluid flow, followed by a submodeling method to obtain the cellular deformation and strain. Different types of scaffolds were designed based on different porosity and architecture. The cell was modeled with cytoplasm, nucleus, cell membrane, and cytoskeletons. The main objective of the study is to examine the variation of cellular responses due to different porosity and architecture of the scaffold. The results of this study highlight that permeability is higher in the case of gyroid structure and wall shear stress (WSS) is higher in the case of diamond structure. The permeability of all scaffolds increases with the increase of porosity. The opposite trend is shown in the case of WSS within scaffolds. The cell is showing higher deformation when it is placed on the front position of the scaffold toward the direction of fluid flow. This study will guide us in predicting an ideal scaffold for better cell growth.

References

1.
Gómez
,
S.
,
Vlad
,
M. D.
,
López
,
J.
, and
Fernández
,
E.
,
2016
, “
Design and Properties of 3D Scaffolds for Bone Tissue Engineering
,”
Acta Biomater.
,
42
, pp.
341
350
.10.1016/j.actbio.2016.06.032
2.
Zhao
,
F.
,
Vaughan
,
T. J.
, and
Mcnamara
,
L. M.
,
2015
, “
Multiscale Fluid-Structure Interaction Modeling to Determine the Mechanical Stimulation of Bone Cells in a Tissue Engineered Scaffold
,”
Biomech. Model Mechanobiol.
,
14
(
2
), pp.
231
243
.10.1007/s10237-014-0599-z
3.
Bobis
,
S.
,
Jarocha
,
D.
, and
Majka
,
M.
,
2006
, “
Mesenchymal Stem Cells: Characteristics and Clinical Applications
,”
Folia Histochem. Cytobiol.
,
44
(
4
), pp.
215
–2
30
.
4.
Abbasi
,
F.
,
Ghanian
,
M. H.
,
Baharvand
,
H.
,
Vahidi
,
B.
, and
Eslaminejad
,
M. B.
,
2018
, “
Engineering Mesenchymal Stem Cell Spheroids by Incorporation of Mechanoregulator Microparticles
,”
J. Mech. Behav. Biomed. Mater.
,
84
, pp.
74
87
.10.1016/j.jmbbm.2018.04.026
5.
Zhang
,
D.
,
Qiu
,
D.
,
Gibson
,
M. A.
,
Zheng
,
Y.
,
Fraser
,
H. L.
,
StJohn
,
D. H.
, and
Easton
,
M. A.
,
2019
, “
Additive Manufacturing of Ultrafine-Grained High-Strength Titanium Alloys
,”
Nature
,
576
(
7785
), pp.
91
95
.10.1038/s41586-019-1783-1
6.
Xu
,
W.
,
Hou
,
C.
,
Mao
,
Y.
,
Yang
,
L.
,
Tamaddon
,
M.
,
Zhang
,
J.
,
Qu
,
X.
,
Liu
,
C.
,
Su
,
B.
, and
Lu
,
X.
,
2020
, “
Characteristics of Novel Ti–10Mo-xCu Alloy by Powder Metallurgy for Potential Biomedical Implant Applications
,”
Bioact. Mater.
,
5
(
3
), pp.
659
666
.10.1016/j.bioactmat.2020.04.012
7.
Mitra
,
I.
,
Bose
,
S.
,
Dernell
,
W. S.
,
Dasgupta
,
N.
,
Eckstrand
,
C.
,
Herrick
,
J.
,
Yaszemski
,
M. J.
,
Goodman
,
S. B.
, and
Bandyopadhyay
,
A.
,
2021
, “
3D Printing in Alloy Design to Improve Biocompatibility in Metallic Implants
,”
Mater. Today
,
45
, pp.
20
34
.10.1016/j.mattod.2020.11.021
8.
Xu
,
W.
,
Chen
,
M.
,
Lu
,
X.
,
Zhang
,
D. W.
,
Singh
,
H. P.
,
Jian-Shu
,
Y.
,
Pan
,
Y.
,
Qu
,
X. H.
, and
Liu
,
C. Z.
,
2020
, “
Effects of Mo Content on Corrosion and Tribocorrosion Behaviours of Ti-Mo Orthopaedic Alloys Fabricated by Powder Metallurgy
,”
Corros. Sci.
,
168
, p.
108557
.10.1016/j.corsci.2020.108557
9.
Choudhury
,
S.
,
Raja
,
D.
,
Roy
,
S.
, and
Datta
,
S.
,
2020
, “
Stress Analysis of Different Types of Cages in Cervical Vertebrae: A Finite Element Study
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
912
(
2
), p.
022025
.10.1088/1757-899X/912/2/022025
10.
Choudhury
,
S.
,
Dhason
,
R.
,
Roy
,
S.
, and
Datta
,
S.
,
2022
, “
Design Optimization of PEEK Hybrid Composite Cervical Cage
,”
Int. J. Multiscale Comput. Eng.
,
20
(
4
), pp.
1
16
.10.1615/IntJMultCompEng.2022039152
11.
Xu
,
W.
,
Lu
,
X.
,
Hayat
,
M. D.
,
Tian
,
J.
,
Huang
,
C.
,
Chen
,
M.
,
Qu
,
X.
, and
Wen
,
C.
,
2019
, “
Fabrication and Properties of Newly Developed Ti35Zr28Nb Scaffolds Fabricated by Powder Metallurgy for Bone-Tissue Engineering
,”
J. Mater Res. Technol.
,
8
(
5
), pp.
3696
3704
.10.1016/j.jmrt.2019.06.021
12.
Zadpoor
,
A. A.
,
2019
, “
Mechanical Performance of Additively Manufactured Meta-Biomaterials
,”
Acta Biomater.
,
85
, pp.
41
59
.10.1016/j.actbio.2018.12.038
13.
Xu
,
W.
,
Tian
,
J.
,
Liu
,
Z.
,
Lu
,
X.
,
Hayat
,
M. D.
,
Yan
,
Y.
,
Li
,
Z.
,
Qu
,
X.
, and
Wen
,
C.
,
2019
, “
Novel Porous Ti35Zr28Nb Scaffolds Fabricated by Powder Metallurgy With Excellent Osteointegration Ability for Bone-Tissue Engineering Applications
,”
Mater. Sci. Eng. C
,
105
, p.
110015
.10.1016/j.msec.2019.110015
14.
Wu
,
S.
,
Liu
,
X.
,
Yeung
,
K. W.
,
Liu
,
C.
, and
Yang
,
X.
,
2014
, “
Biomimetic Porous Scaffolds for Bone Tissue Engineering
,”
Mater. Sci. Eng. R: Rep.
,
80
, pp.
1
36
.10.1016/j.mser.2014.04.001
15.
Ma
,
S.
,
Tang
,
Q.
,
Feng
,
Q.
,
Song
,
J.
,
Han
,
X.
, and
Guo
,
F.
,
2019
, “
Mechanical Behaviours and Mass Transport Properties of Bone-Mimicking Scaffolds Consisted of Gyroid Structures Manufactured Using Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
93
, pp.
158
169
.10.1016/j.jmbbm.2019.01.023
16.
Moradkhani
,
M.
,
Vahidi
,
B.
, and
Ahmadian
,
B.
,
2021
, “
Finite Element Study of Stem Cells Under Fluid Flow for Mechanoregulation Toward Osteochondral Cells
,”
J. Mater. Sci. Mater. Med.
,
32
(
7
), pp.
1
10
.10.1007/s10856-021-06545-3
17.
David
,
B.
,
Bonnefont-Rousselot
,
D.
,
Oudina
,
K.
,
Degat
,
M. C.
,
Deschepper
,
M.
,
Viateau
,
V.
,
Bensidhoum
,
M.
,
Oddou
,
C.
, and
Petite
,
H.
,
2011
, “
A Perfusion Bioreactor for Engineering Bone Constructs: An In Vitro and In Vivo Study
,”
Tissue Eng., Part C
,
17
(
5
), pp.
505
516
.10.1089/ten.tec.2010.0468
18.
Toh
,
Y. C.
, and
Voldman
,
J.
,
2011
, “
Fluid Shear Stress Primes Mouse Embryonic Stem Cells for Differentiation in a Self-Renewing Environment Via Heparan Sulfate Proteoglycans Transduction
,”
FASEB J.
,
25
(
4
), pp.
1208
1217
.10.1096/fj.10-168971
19.
Ahsan
,
T.
, and
Nerem
,
R. M.
,
2010
, “
Fluid Shear Stress Promotes an Endothelial-Like Phenotype During the Early Differentiation of Embryonic Stem Cells
,”
Tissue Eng., Part A
,
16
(
11
), pp.
3547
3553
.10.1089/ten.tea.2010.0014
20.
Sargent
,
C. Y.
,
Berguig
,
G. Y.
,
Kinney
,
M. A.
,
Hiatt
,
L. A.
,
Carpenedo
,
R. L.
,
Berson
,
R. E.
, and
McDevitt
,
T. C.
,
2010
, “
Hydrodynamic Modulation of Embryonic Stem Cell Differentiation by Rotary Orbital Suspension Culture
,”
Biotechnol. Bioeng.
,
105
(
3
), pp.
611
626
.10.1002/bit.22578
21.
Adamo
,
L.
,
Naveiras
,
O.
,
Wenzel
,
P. L.
,
McKinney-Freeman
,
S.
,
Mack
,
P. J.
,
Gracia-Sancho
,
J.
,
Suchy-Dicey
,
A.
,
Yoshimoto
,
M.
,
Lensch
,
M. W.
,
Yoder
,
M. C.
,
García-Cardeña
,
G.
, and
Daley
,
G. Q.
,
2009
, “
Biomechanical Forces Promote Embryonic Haematopoiesis
,”
Nature
,
459
(
7250
), pp.
1131
1135
.10.1038/nature08073
22.
Delaine-Smith
,
R. M.
, and
Reilly
,
G. C.
,
2012
, “
Mesenchymal Stem Cell Responses to Mechanical Stimuli
,”
Muscles Ligaments Tendons J.
,
2
(
3
), pp.
169
180
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666521/
23.
Melchels
,
F. P.
,
Tonnarelli
,
B.
,
Olivares
,
A. L.
,
Martin
,
I.
,
Lacroix
,
D.
,
Feijen
,
J.
,
Wendt
,
D. J.
, and
Grijpma
,
D. W.
,
2011
, “
The Influence of the Scaffold Design on the Distribution of Adhering Cells After Perfusion Cell Seeding
,”
Bio Mater.
,
32
(
11
), pp.
2878
2884
.10.1016/j.biomaterials.2011.01.023
24.
Campos Marin
,
A.
, and
Lacroix
,
D.
,
2015
, “
The Inter-Sample Structural Variability of Regular Tissue-Engineered Scaffolds Significantly Affects the Micromechanical Local Cell Environment
,”
Interface Focus
,
5
(
2
), p.
20140097
.10.1098/rsfs.2014.0097
25.
Thondapu
,
V.
,
Tenekecioglu
,
E.
,
Poon
,
E. K. W.
,
Collet
,
C.
,
Torii
,
R.
,
Bourantas
,
C. V.
,
Chin
,
C.
,
Sotomi
,
Y.
,
Jonker
,
H.
,
Dijkstra
,
J.
,
Revalor
,
E.
,
Gijsen
,
F.
,
Onuma
,
Y.
,
Ooi
,
A.
,
Barlis
,
P.
, and
Serruys
,
P. W.
,
2018
, “
Endothelial Shear Stress 5 Years After Implantation of a Coronary Bioresorbable Scaffold
,”
Eur. Heart J.
,
39
(
18
), pp.
1602
1609
.10.1093/eurheartj/ehx810
26.
Gupta
,
A.
,
Rana
,
M.
,
Mondal
,
N.
,
Das
,
A.
,
Karmakar
,
A.
, and
Chowdhury
,
A. R.
,
2023
, “
Designing of Different Types of Gyroid Scaffold Architecture to Achieve Patient-Specific Osseointegration Friendly Mechanical Environment
,”
Int. J. Multiscale Comput. Eng.
,
21
(
4
), pp.
1
15
.10.1615/IntJMultCompEng.2022043461
27.
Ali
,
D.
,
Ozalp
,
M.
,
Blanquer
,
S. B.
, and
Onel
,
S.
,
2020
, “
Permeability and Fluid Flow-Induced Wall Shear Stress in Bone Scaffolds With TPMS and Lattice Architectures: A CFD Analysis
,”
Eur. J. Mech. B Fluids
,
79
, pp.
376
385
.10.1016/j.euromechflu.2019.09.015
28.
Bhattacharyya
,
R.
,
Rana
,
M.
,
Gupta
,
A.
,
Dutta Majumdar
,
D.
,
Dutta Majumdar
,
J.
, and
Roy Chowdhury
,
A.
,
2022
, “
Modeling of Porous Titanium and Understanding Its Mechanical Behavior Using Micro-Computed Tomography
,”
J. Mater. Eng. Perform.
,
31
, pp.
8160
8168
.10.1007/s11665-022-06827-z
29.
Lesman
,
A.
,
Blinder
,
Y.
, and
Levenberg
,
S.
,
2010
, “
Modeling of Flow‐Induced Shear Stress Applied on 3D Cellular Scaffolds: Implications for Vascular Tissue Engineering
,”
Biotechnol. Bio Eng.
,
105
(
3
), pp.
645
654
.10.1002/bit.22555
30.
Zhao
,
F.
,
Vaughan
,
T. J.
, and
McNamara
,
L. M.
,
2016
, “
Quantification of Fluid Shear Stress in Bone Tissue Engineering Scaffolds With Spherical and Cubical Pore Architectures
,”
Biomech. Model Mechanobiol.
,
15
(
3
), pp.
561
577
.10.1007/s10237-015-0710-0
31.
Guilak
,
F.
,
Cohen
,
D. M.
,
Estes
,
B. T.
,
Gimble
,
J. M.
,
Liedtke
,
W.
, and
Chen
,
C. S.
,
2009
, “
Control of Stem Cell Fate by Physical Interactions With the Extracellular Matrix
,”
Cell Stem Cell
,
5
(
1
), pp.
17
26
.10.1016/j.stem.2009.06.016
32.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell–Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
(
12
), pp.
1663
1673
.10.1016/S0021-9290(00)00105-6
33.
Rahimpour
,
E.
,
Vahidi
,
B.
, and
Mollahoseini
,
Z.
,
2019
, “
A Computational Simulation of Cyclic Stretch of an Individual Stem Cell Using a Nonlinear Model
,”
J. Tissue Eng. Regener. Med.
,
13
(
2
), pp.
274
282
.10.1002/term.2790
34.
Alihemmati
,
Z.
,
Vahidi
,
B.
,
Haghighipour
,
N.
, and
Salehi
,
M.
,
2017
, “
Computational Simulation of Static/Cyclic Cell Stimulations to Investigate Mechanical Modulation of an Individual Mesenchymal Stem Cell Using Confocal Microscopy
,”
Mater. Sci. Eng. C
,
70
, pp.
494
504
.10.1016/j.msec.2016.09.026
35.
Vaez Ghaemi
,
R.
,
Vahidi
,
B.
,
Sabour
,
M. H.
,
Haghighipour
,
N.
, and
Alihemmati
,
Z.
,
2016
, “
Fluid–Structure Interactions Analysis of Shear‐Induced Modulation of a Mesenchymal Stem Cell: An Image‐Based Study
,”
Artif. Organs
,
40
(
3
), pp.
278
287
.10.1111/aor.12547
36.
Vaughan
,
T. J.
,
Haugh
,
M. G.
, and
McNamara
,
L. M.
,
2013
, “
A Fluid–Structure Interaction Model to Characterize Bone Cell Stimulation in Parallel-Plate Flow Chamber Systems
,”
J. R. Soc. Interface
,
10
(
81
), p.
20120900
.10.1098/rsif.2012.0900
37.
Lai
,
W. M.
,
Rubin
,
D.
, and
Krempl
,
E.
,
1993
,
Introduction to Continuum Mechanics
,
Butterworth Heinemann
, Oxford, UK.
38.
Choudhury
,
S.
,
Rana
,
M.
,
Chakraborty
,
A.
,
Majumder
,
S.
,
Roy
,
S.
,
RoyChowdhury
,
A.
, and
Datta
,
S.
,
2022
, “
Design of Patient Specific Basal Dental Implant Using Finite Element Method and Artificial Neural Network Technique
,”
Proc. Inst. Mech. Eng., Part H
,
236
(
9
), pp.
1375
1387
.10.1177/09544119221114729
39.
Sommerhage
,
F.
,
Helpenstein
,
R.
,
Rauf
,
A.
,
Wrobel
,
G.
,
Offenhäusser
,
A.
, and
Ingebrandt
,
S.
,
2008
, “
Membrane Allocation Profiling: A Method to Characterize Three-Dimensional Cell Shape and Attachment Based on Surface Reconstruction
,”
Bio Mater.
,
29
(
29
), pp.
3927
3935
.10.1016/j.biomaterials.2008.06.020
40.
Frisch
,
T.
, and
Thoumine
,
O.
,
2002
, “
Predicting the Kinetics of Cell Spreading
,”
J. Biomech.
,
35
(
8
), pp.
1137
1141
.10.1016/S0021-9290(02)00075-1
41.
Banerjee
,
A.
,
Khan
,
M. P.
,
Barui
,
A.
,
Datta
,
P.
,
Chowdhury
,
A. R.
, and
Bhowmik
,
K.
,
2022
, “
Finite Element Analysis of the Influence of Cyclic Strain on Cells Anchored to Substrates With Varying Properties
,”
Med. Biol. Eng. Comput.
,
60
(
1
), pp.
171
187
.10.1007/s11517-021-02453-4
42.
Yokokawa
,
M.
,
Takeyasu
,
K.
, and
Yoshimura
,
S. H.
,
2008
, “
Mechanical Properties of Plasma Membrane and Nuclear Envelope Measured by Scanning Probe Microscope
,”
J. Microsc.
,
232
(
1
), pp.
82
90
.10.1111/j.1365-2818.2008.02071.x
43.
Barreto
,
S.
,
Clausen
,
C. H.
,
Perrault
,
C. M.
,
Fletcher
,
D. A.
, and
Lacroix
,
D.
,
2013
, “
A Multi-Structural Single Cell Model of Force-Induced Interactions of Cytoskeletal Components
,”
Bio Mater.
,
34
(
26
), pp.
6119
6126
.10.1016/j.biomaterials.2013.04.022
44.
Suresh
,
S.
,
2007
, “
Biomechanics and Biophysics of Cancer Cells
,”
Acta Biomater.
,
3
(
4
), pp.
413
438
.10.1016/j.actbio.2007.04.002
45.
Nauman
,
E. A.
,
Fong
,
K. E.
, and
Keaveny
,
T. M.
,
1999
, “
Dependence of Intertrabecular Permeability on Flow Direction and Anatomic site
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
517
524
.10.1114/1.195
46.
Kim
,
S. W.
,
Her
,
S. J.
,
Park
,
S. J.
,
Kim
,
D.
,
Park
,
K. S.
,
Lee
,
H. K.
,
Han
,
B. H.
,
Kim
,
M. S.
,
Shin
,
C. S.
, and
Kim
,
S. Y.
,
2005
, “
Ghrelin Stimulates Proliferation and Differentiation and Inhibits Apoptosis in Osteoblastic MC3T3-E1 Cells
,”
Bone
,
37
(
3
), pp.
359
369
.10.1016/j.bone.2005.04.020
47.
Mishra
,
R.
,
Sefcik
,
R. S.
,
Bishop
,
T. J.
,
Montelone
,
S. M.
,
Crouser
,
N.
,
Welter
,
J. F.
,
Caplan
,
A. I.
, and
Dean
,
D.
,
2016
, “
Growth Factor Dose Tuning for Bone Progenitor Cell Proliferation and Differentiation on Resorbable Poly (Propylene Fumarate) Scaffolds
,”
Tissue Eng., Part C
,
22
(
9
), pp.
904
913
.10.1089/ten.tec.2016.0094
48.
Neidlinger‐Wilke
,
C.
,
Wilke
,
H. J.
, and
Claes
,
L.
,
1994
, “
Cyclic Stretching of Human Osteoblasts Affects Proliferation and Metabolism: A New Experimental Method and Its Application
,”
J. Orthop. Res.
,
12
(
1
), pp.
70
78
.10.1002/jor.1100120109
You do not currently have access to this content.