Abstract

This study investigated the interaction of cough droplets with airflow in a realistic human airway. The ultimate aim was to understand the behavior of cough droplets inside the airway and to assess the potential of droplets to be retained in the airway or transmitted to the lungs. A computational fluid dynamics (CFD) model, based on the Euler–Lagrangian framework, was employed to predict the two-phase, droplet-laden transient cough flow in a realistic three-dimensional (3D) human airway. The airway geometry was reconstructed from patient computed tomography (CT) scan dataset. The discrete phase model was used to track the motion of the droplets in the air flow. Two distinct cough profiles—a strong cough and a weak cough—acquired experimentally from human subjects, were used as input to simulate normal and disordered cough functions. The effects of cough strength and droplet size on droplet retention and aspiration in the airway were investigated. It was found that droplet retention was significantly higher for a weak cough compared to a strong cough. For a weak cough, the highest droplet retention percentage exceeded 60%, while for a strong cough, it was less than 20%. Larger sized droplets were more likely to be aspirated into the lungs, especially under weak cough conditions. In the case of weak cough, more than 5% of the 200 μm sized droplets were aspirated into the lungs, whereas for strong cough, aspiration was less than 2%.

References

1.
Gibson
,
P. G.
,
Simpson
,
J. L.
,
Ryan
,
N. M.
, and
Vertigan
,
A. E.
,
2014
, “
Mechanisms of Cough
,”
Curr. Opin. Allergy Clin. Immunol.
,
14
(
1
), pp.
55
61
.10.1097/ACI.0000000000000027
2.
Poliacek
,
I.
,
Plevkova
,
J.
,
Pitts
,
T.
,
Kotmanova
,
Z.
,
Jan
,
J.
, and
Simera
,
M.
,
2016
, “
Cough Modulation by Upper Airway Stimuli in Cat–Potential Clinical Application?
,”
Open J. Mol. Integr. Physiol.
,
06
(
3
), pp.
35
43
.10.4236/ojmip.2016.63004
3.
Ren
,
S.
,
Niu
,
J.
,
Luo
,
Z.
,
Shi
,
Y.
,
Cai
,
M.
,
Luo
,
Z.
, and
Yu
,
Q.
,
2020
, “
Cough Expired Volume and Cough Peak Flow Rate Estimation Based on GA‐BP Method
,”
Complexity
,
2020
(
1
), pp.
1
9
.10.1155/2020/9036369
4.
Ren
,
S.
,
Niu
,
J.
,
Cai
,
M.
,
Hao
,
L.
,
Shi
,
Y.
,
Xu
,
W.
, and
Luo
,
Z.
,
2021
, “
Novel Assisted Cough System Based on Simulating Cough Airflow Dynamics
,”
Bio-Des. Manuf.
,
4
(
3
), pp.
479
489
.10.1007/s42242-021-00132-9
5.
Mick
,
P.
, and
Murphy
,
R.
,
2020
, “
Aerosol-Generating Otolaryngology Procedures and the Need for Enhanced PPE During the COVID-19 Pandemic: A Literature Review
,”
J. Otolaryngol. -Head Neck Surg.
,
49
(
1
), p.
29
.10.1186/s40463-020-00424-7
6.
Katre
,
P.
,
Banerjee
,
S.
,
Balusamy
,
S.
, and
Sahu
,
K. C.
,
2021
, “
Fluid Dynamics of Respiratory Droplets in the Context of COVID-19: Airborne and Surfaceborne Transmissions
,”
Phys. Fluids
,
33
(
8
), p.
081302
.10.1063/5.0063475
7.
Zhou
,
M.
, and
Zou
,
J.
,
2021
, “
A Dynamical Overview of Droplets in the Transmission of Respiratory Infectious Diseases
,”
Phys. Fluids
,
33
(
3
), p.
031301
.10.1063/5.0039487
8.
National Center for Immunization and Respiratory Diseases (U.S.). Division of Viral Diseases
,
2021
, “
Scientific Brief: SARS-COV-2 Transmission
,” National Center for Immunization and Respiratory Diseases, Atlanta, GA, accessed Aug. 2, 2024, https://stacks.cdc.gov/view/cdc/105949
9.
El Hassan
,
M.
,
Assoum
,
H.
,
Bukharin
,
N.
,
Al Otaibi
,
H.
,
Mofijur
,
M.
, and
Sakout
,
A.
,
2021
, “
A Review on the Transmission of COVID-19 Based on Cough/Sneeze/Breath Flows
,”
Eur. Phys. J. Plus
,
137
(
1
), p.
1
.10.1140/epjp/s13360-021-02162-9
10.
Liu
,
L.
,
Wei
,
J.
,
Li
,
Y.
, and
Ooi
,
A.
,
2017
, “
Evaporation and Dispersion of Respiratory Droplets From Coughing
,”
Indoor Air
,
27
(
1
), pp.
179
190
.10.1111/ina.12297
11.
Pitts
,
T.
,
Bolser
,
D.
,
Rosenbek
,
J.
,
Troche
,
M.
, and
Sapienza
,
C.
,
2008
, “
Voluntary Cough Production and Swallow Dysfunction in Parkinson's Disease
,”
Dysphagia
,
23
(
3
), pp.
297
301
.10.1007/s00455-007-9144-x
12.
Pitts
,
T.
,
Morris
,
K.
,
Lindsey
,
B.
,
Davenport
,
P.
,
Poliacek
,
I.
, and
Bolser
,
D.
,
2012
, “
Co‐Ordination of Cough and Swallow In Vivo and in Silico
,”
Exp. Physiol.
,
97
(
4
), pp.
469
473
.10.1113/expphysiol.2011.063362
13.
DeLegge
,
M. H.
,
2002
, “
Aspiration Pneumonia: Incidence, Mortality, and at Risk Populations
,”
J. Parenter. Enteral Nutr.
,
26
(
6S
), pp.
S19
S25
.10.1177/014860710202600604
14.
Zheng
,
Z.
,
Wu
,
Z.
,
Liu
,
N.
,
Chen
,
P.
,
Hou
,
P.
,
Wang
,
X.
,
Fu
,
Y.
,
Liang
,
W.
, and
Chen
,
R.
,
2016
, “
Silent Aspiration in Patients With Exacerbation of COPD
,”
Eur. Respir. J.
,
48
(
2
), pp.
570
573
.10.1183/13993003.00007-2016
15.
Soriano
,
J. B.
,
Kendrick
,
P. J.
,
Paulson
,
K. R.
,
Gupta
,
V.
,
Abrams
,
E. M.
,
Adedoyin
,
R. A.
,
Adhikari
,
T. B.
, et al.,
2020
, “
Prevalence and Attributable Health Burden of Chronic Respiratory Diseases, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017
,”
Lancet Respir. Med.
,
8
(
6
), pp.
585
596
.10.1016/S2213-2600(20)30105-3
16.
Li
,
H.
,
Leong
,
F. Y.
,
Xu
,
G.
,
Kang
,
C. W.
,
Lim
,
K. H.
,
Tan
,
B. H.
, and
Loo
,
C. M.
,
Tan
,
B. H.
, and
Loo
,
C. M.
,
2021
, “
Airborne Dispersion of Droplets During Coughing: A Physical Model of Viral Transmission
,”
Sci. Rep.
,
11
(
1
), p.
4617
.10.1038/s41598-021-84245-2
17.
Wang
,
H.
,
Li
,
Z.
,
Zhang
,
X.
,
Zhu
,
L.
,
Liu
,
Y.
, and
Wang
,
S.
,
2020
, “
The Motion of Respiratory Droplets Produced by Coughing
,”
Phys. Fluids
,
32
(
12
), p.
125102
.10.1063/5.0033849
18.
Dbouk
,
T.
, and
Drikakis
,
D.
,
2020
, “
On Coughing and Airborne Droplet Transmission to Humans
,”
Phys. Fluids
,
32
(
5
), p.
053310
.10.1063/5.0011960
19.
Oh
,
W.
,
Ooka
,
R.
,
Kikumoto
,
H.
, and
Han
,
M.
,
2022
, “
Numerical Modeling of Cough Airflow: Establishment of Spatial–Temporal Experimental Dataset and CFD Simulation Method
,”
Build. Environ.
,
207
, p.
108531
.10.1016/j.buildenv.2021.108531
20.
Hu
,
L.
,
Ma
,
Y.-F.
,
Pourfattah
,
F.
,
Deng
,
W.
, and
Wang
,
L.-P.
,
2023
, “
Numerical Study of Cough Droplet Transmission in an Indoor Environment
,”
Phys. Fluids
,
35
(
11
), p.
113315
.10.1063/5.0171419
21.
Tang
,
J. W.
,
Nicolle
,
A.
,
Pantelic
,
J.
,
Koh
,
G. C.
,
Wang
,
L. D.
,
Amin
,
M.
,
Klettner
,
C. A.
,
Cheong
,
D. K. W.
,
Sekhar
,
C.
, and
Tham
,
K. W.
,
2012
, “
Airflow Dynamics of Coughing in Healthy Human Volunteers by Shadowgraph Imaging: An Aid to Aerosol Infection Control
,”
PloS One
,
7
(
4
), p.
e34818
.10.1371/journal.pone.0034818
22.
Mylavarapu
,
G.
,
Murugappan
,
S.
,
Mihaescu
,
M.
,
Kalra
,
M.
,
Khosla
,
S.
, and
Gutmark
,
E.
,
2009
, “
Validation of Computational Fluid Dynamics Methodology Used for Human Upper Airway Flow Simulations
,”
J. Biomech.
,
42
(
10
), pp.
1553
1559
.10.1016/j.jbiomech.2009.03.035
23.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2010
, “
Airflow and Particle Transport in the Human Respiratory System
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
301
334
.10.1146/annurev-fluid-121108-145453
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
Zahari
,
N. M.
,
Zawawi
,
M. H.
,
Sidek
,
L. M.
,
Mohamad
,
D.
,
Itam
,
Z.
,
Ramli
,
M. Z.
,
Syamsir
,
A.
,
Abas
,
A.
, and
Rashid
,
M.
,
2018
, “
Introduction of Discrete Phase Model (DPM) in Fluid Flow: A Review
,”
AIP Conf. Proc.
,
2030
(
1
), p.
020234
.10.1063/1.5066875
26.
Ilegbusi
,
O. J.
,
Kuruppumullage
,
D. N. S.
, and
Hoffman
,
B.
,
2021
, “
Dynamics of Cough and Particulate Behaviour in the Human Airway
,”
Math. Comput. Modell. Dyn. Syst.
,
27
(
1
), pp.
222
245
.10.1080/13873954.2021.1889608
27.
de Rochefort
,
L.
,
Vial
,
L.
,
Fodil
,
R.
,
Maître
,
X.
,
Louis
,
B.
,
Isabey
,
D.
,
Caillibotte
,
G.
, et al.,
2007
, “
In Vitro Validation of Computational Fluid Dynamic Simulation in Human Proximal Airways With Hyperpolarized 3He Magnetic Resonance Phase-Contrast Velocimetry
,”
J. Appl. Physiol.
,
102
(
5
), pp.
2012
2023
.10.1152/japplphysiol.01610.2005
28.
Ren
,
S.
,
Cai
,
M.
,
Shi
,
Y.
,
Luo
,
Z.
, and
Wang
,
T.
,
2022
, “
Influence of Cough Airflow Characteristics on Respiratory Mucus Clearance
,”
Phys. Fluids
,
34
(
4
), p.
041911
.10.1063/5.0088100
29.
Zayas
,
G.
,
Chiang
,
M. C.
,
Wong
,
E.
,
MacDonald
,
F.
,
Lange
,
C. F.
,
Senthilselvan
,
A.
, and
King
,
M.
,
2012
, “
Cough Aerosol in Healthy Participants: Fundamental Knowledge to Optimize Droplet-Spread Infectious Respiratory Disease Management
,”
BMC Pulm. Med.
,
12
(
1
), p.
11
.10.1186/1471-2466-12-11
30.
April Si
,
X.
,
Talaat
,
M.
, and
Xi
,
J.
,
2021
, “
SARS COV-2 Virus-Laden Droplets Coughed From Deep Lungs: Numerical Quantification in a Single-Path Whole Respiratory Tract Geometry
,”
Phys. Fluids
,
33
(
2
), p.
023306
.10.1063/5.0040914
You do not currently have access to this content.