Abstract

Center of resistance (CR) has been widely accepted in dentistry as a reference point for controlling tooth moment, which depends on the direction of loading and the morphology of the periodontal ligament (PDL). In clinical practice, dentists estimate the location of CR based on the morphology of the root of teeth, which may lead to a misestimation of orthodontic treatment. A quick method was proposed to efficiently determine the CR by identifying the centroid of the root projection (CRP), according to the orthodontic force. However, the original CRP method was limited to single-rooted teeth, and it did not provide a strategy for handling the overlapping roots projection of multirooted teeth. To address this issue, we expanded the CRP method to accommodate multirooted teeth by calculating a weighted average of each root’s projection. We further validated the modified CRP method using finite element analysis (FEA) simulation for both single-rooted and multirooted teeth considering mesial–distal and buccal–lingual force directions. The evaluation of displacement distribution along the projection direction allowed us to assess translation and rotation movements, which confirmed that the centroid of root projection can accurately serve as the CR for the multirooted teeth. Additionally, we observed heterogeneous stress distributions in the multirooted teeth. Considering the well-acknowledged bone remodeling effect in response to local stress states, this indicated that comprehensive indexes beyond the CR are desired for evaluating or controlling tooth movement.

References

1.
Geiger
,
M. E.
, and
Lapatki
,
B. G.
,
2014
, “
Locating the Center of Resistance in Individual Teeth Via Two- and Three-Dimensional Radiographic Data
,”
J. Orofacial Orthop.
,
75
(
2
), pp.
96
106
.10.1007/s00056-013-0198-0
2.
Kuruthukulam
,
R. M.
, and
Patil
,
A. S.
,
2023
, “
The Center of Resistance of a Tooth: A Review of the Literature
,”
Biophys. Rev.
,
15
(
1
), pp.
35
41
.10.1007/s12551-023-01042-z
3.
Dathe
,
H.
,
Nagerl
,
H.
, and
Kubein-Meesenburg
,
D.
,
2013
, “
A Caveat Concerning Center of Resistance
,”
J. Dent. Biomech.
,
4
, p.
1758736013499770
.10.1177/1758736013499770
4.
Păcurar
,
M.
,
Brezeanu
,
L.
,
Olteanu
,
C.
,
Dombi
,
K.
,
Sita
,
D.
, and
Molnar
,
C.
,
2019
, “
The Effect of Rotation Upon Dental Structure Components Following Orthodontic Fix Appliance
,”
Med. Pharm. Rep.
,
92
, pp.
S45
S49
.10.15386/mpr-1519
5.
Voudouris
,
D. J. C.
, and
Voudouris
,
J. D.
,
2019
, “
New JVBarre Maxillary Segmental Distaliser and BiTurbo2 System for Greater Aesthetics, Effective and Efficient Skeletal Class II Treatment: Control of Canine Over-Extrusion and Bodily Maxillary Molar Distalisation
,”
Ortho Int. Mag. Orthod.
,
4
(
1/2019
), p.
6
.https://www.semanticscholar.org/paper/New-JVBarre-maxillary-segmental-distaliser-and-for-Voudouris-Voudouris/cbe3c90587dffeac14eae25875871944a58a0587
6.
Voudouris
,
J. C.
,
Voudouris
,
J. D.
,
Nicolay
,
O.
,
Glaser
,
B.
,
Nicozisis
,
J.
,
Theodoridis
,
G.
,
Carrillo
,
R.
,
Moshiri
,
M.
, and
Masoud
,
M.
,
2022
, “
Clear Aligners, Dentofacial Orthopedics, Physics and Supercorrection Prescription Biomechanics. A Meeting of the Minds
,”
Semin. Orthod.
,
27
(
4
), pp.
202
258
.10.1053/j.sodo.2021.11.002
7.
Yin
,
K.
,
Han
,
E.
,
Guo
,
J.
,
Yasumura
,
T.
,
Grauer
,
D.
, and
Sameshima
,
G.
,
2019
, “
Evaluating the Treatment Effectiveness and Efficiency of Carriere Distalizer: A Cephalometric and Study Model Comparison of Class II Appliances
,”
Prog. Orthod.
,
20
(
1
), p.
24
.10.1186/s40510-019-0280-2
8.
Van Der Varst
,
P. G.
,
Peters
,
M. C. R. B.
, and
De Boer
,
A.
,
1987
, “
On the Existence of the Orthodontic Center of Resistance
,”
Biomechanics: Basic and Applied Research
,
G.
Bergmann
,
R.
Kölbel
, and
A.
Rohlmann
, eds.,
Springer Netherlands
,
Dordrecht, The Netherlands
, pp.
751
756
.
9.
Sia
,
S. S.
,
Koga
,
Y.
, and
Yoshida
,
N.
,
2007
, “
Determining the Center of Resistance of Maxillary Anterior Teeth Subjected to Retraction Forces in Sliding Mechanics
,”
Angle Orthod.
,
77
(
6
), pp.
999
1003
.10.2319/112206-478
10.
Sanchez
,
E. J.
,
Gabler
,
L. F.
,
Good
,
A. B.
,
Funk
,
J. R.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2019
, “
A Reanalysis of Football Impact Reconstructions for Head Kinematics and Finite Element Modeling
,”
Clin. Biomech. (Bristol, Avon)
,
64
, pp.
82
89
.10.1016/j.clinbiomech.2018.02.019
11.
Luu
,
B.
,
Cronauer
,
E. A.
,
Gandhi
,
V.
,
Kaplan
,
J.
,
Pierce
,
D. M.
, and
Upadhyay
,
M.
,
2020
, “
A Finite Element Approach for Locating the Center of Resistance of Maxillary Teeth
,”
JoVE
, 28(
1
), p.
60746
.10.3791/60746
12.
Jones
,
M. L.
,
Hickman
,
J.
,
Middleton
,
J.
,
Knox
,
J.
, and
Volp
,
C.
,
2001
, “
A Validated Finite Element Method Study of Orthodontic Tooth Movement in the Human Subject
,”
J. Orthod.
,
28
(
1
), pp.
29
38
.10.1093/ortho/28.1.29
13.
Bi
,
S.
, and
Shi
,
G.
,
2023
, “
The Crucial Role of Periodontal Ligament's Poisson's Ratio and Tension-Compression Asymmetric Moduli on the Evaluation of Tooth Displacement and Stress State of Periodontal Ligament
,”
J. Mech. Behav. Biomed. Mater.
,
148
, p.
106217
.10.1016/j.jmbbm.2023.106217
14.
Jiang
,
F.
,
Kula
,
K.
, and
Chen
,
J.
,
2016
, “
Estimating the Location of the Center of Resistance of Canines
,”
Angle Orthod.
,
86
(
3
), pp.
365
371
.10.2319/051215-322.1
15.
Viecilli
,
R. F.
,
Budiman
,
A.
, and
Burstone
,
C. J.
,
2013
, “
Axes of Resistance for Tooth Movement: Does the Center of Resistance Exist in 3-Dimensional Space?
,”
Am. J. Orthod. Dentofacial Orthop.
,
143
(
2
), pp.
163
172
.10.1016/j.ajodo.2012.09.010
16.
Meyer
,
B. N.
,
Chen
,
J.
, and
Katona
,
T. R.
,
2010
, “
Does the Center of Resistance Depend on the Direction of Tooth Movement?
,”
Am. J. Orthod. Dentofacial Orthop.
,
137
(
3
), pp.
354
361
.10.1016/j.ajodo.2008.03.029
17.
Oh
,
M.-B.
,
Mo
,
S.-S.
,
Hwang
,
C.-J.
,
Chung
,
C.
,
Kang
,
J.-M.
, and
Lee
,
K.-J.
,
2019
, “
The 3-Dimensional Zone of the Center of Resistance of the Mandibular Posterior Teeth Segment
,”
Am. J. Orthod. Dentofacial Orthop.
,
156
(
3
), pp.
365
374
.10.1016/j.ajodo.2018.10.017
18.
Li
,
Y.
,
Jacox
,
L. A.
,
Little
,
S. H.
, and
Ko
,
C.-C.
,
2018
, “
Orthodontic Tooth Movement: The Biology and Clinical Implications
,”
Kaohsiung J. Med. Sci.
,
34
(
4
), pp.
207
214
.10.1016/j.kjms.2018.01.007
19.
Chang
,
M.
,
Lin
,
H.
,
Fu
,
H.
,
Wang
,
B.
,
Han
,
G.
, and
Fan
,
M.
,
2017
, “
MicroRNA‐195‐5p Regulates Osteogenic Differentiation of Periodontal Ligament Cells Under Mechanical Loading
,”
J. Cell. Physiol.
,
232
(
12
), pp.
3762
3774
.10.1002/jcp.25856
20.
Wang
,
D.
,
Akbari
,
A.
,
Jiang
,
F.
,
Liu
,
Y.
, and
Chen
,
J.
,
2022
, “
The Effects of Different Types of Periodontal Ligament Material Models on Stresses Computed Using Finite Element Models
,”
Am. J. Orthod. Dentofacial Orthop.
,
162
(
6
), pp.
e328
e336
.10.1016/j.ajodo.2022.09.008
21.
Moga
,
R. A.
,
Buru
,
S. M.
, and
Olteanu
,
C. D.
,
2022
, “
Assessment of the Best FEA Failure Criteria (Part I): Investigation of the Biomechanical Behavior of PDL in Intact and Reduced Periodontium
,”
IJERPH
,
19
(
19
), p.
12424
.10.3390/ijerph191912424
22.
Chen
,
J.
,
Li
,
W.
,
Swain
,
M. V.
,
Ali Darendeliler
,
M.
, and
Li
,
Q.
,
2014
, “
A Periodontal Ligament Driven Remodeling Algorithm for Orthodontic Tooth Movement
,”
J. Biomech.
,
47
(
7
), pp.
1689
1695
.10.1016/j.jbiomech.2014.02.030
23.
Liao
,
Z.
,
Chen
,
J.
,
Li
,
W.
,
Darendeliler
,
M. A.
,
Swain
,
M.
, and
Li
,
Q.
,
2016
, “
Biomechanical Investigation Into the Role of the Periodontal Ligament in Optimising Orthodontic Force: A Finite Element Case Study
,”
Arch. Oral Biol.
,
66
, pp.
98
107
.10.1016/j.archoralbio.2016.02.012
24.
Çifter
,
M.
, and
Saraç
,
M.
,
2011
, “
Maxillary Posterior Intrusion Mechanics With Mini-Implant Anchorage Evaluated With the Finite Element Method
,”
Am. J. Orthod. Dentofacial Orthop.
,
140
(
5
), pp.
e233
e241
.10.1016/j.ajodo.2011.06.019
25.
Roberts-Harry
,
D.
, and
Sandy
,
J.
,
2004
, “
Orthodontics. Part 11: Orthodontic Tooth Movement
,”
Br. Dent. J.
,
196
(
7
), pp.
391
394
.10.1038/sj.bdj.4811129
26.
Kojima
,
Y.
, and
Fukui
,
H.
,
2014
, “
A Finite Element Simulation of Initial Movement, Orthodontic Movement, and the Centre of Resistance of the Maxillary Teeth Connected With an Archwire
,”
Eur. J. Orthod.
,
36
(
3
), pp.
255
261
.10.1093/ejo/cjr123
27.
Dot
,
G.
,
Licha
,
R.
,
Goussard
,
F.
, and
Sansalone
,
V.
,
2021
, “
A New Protocol to Accurately Track Long-Term Orthodontic Tooth Movement and Support Patient-Specific Numerical Modeling
,”
J. Biomech.
,
129
, p.
110760
.10.1016/j.jbiomech.2021.110760
You do not currently have access to this content.