Fracture mechanics at the nanoscale level is a very complex phenomenon, whereas the macroscale fracture mechanics approach can be employed for nanoscale to simulate the effect of fracture in single-walled carbon nanotubes (SWCNTs). In this study, an extended finite element method is used to simulate crack propagation in carbon nanotubes. The concept of the model is based on the assumption that carbon nanotubes, when loaded, behave like space frame structures. The nanostructure is analyzed using the finite element method, and the modified Morse interatomic potential is used to simulate the nonlinear force field of the C–C bonds. The model has been applied to single-walled zigzag, armchair, and chiral nanotubes subjected to axial tension. The contour integral method is used for the calculation of the J-integral and stress intensity factors (SIFs) at various crack locations and dimensions of nanotubes under tensile loading. A comparative study of results shows the behavior of cracks in carbon nanotubes. It is observed that for the smaller length of nanotube, as the diameter increased, the stress intensity factor is linearly varied while for the longer nanotube, the variation in stress intensity factor is nonlinear. It is also observed that as the crack is oriented closer to the loading end, the stress intensity factor shows higher sensitivity to smaller lengths, which indicates more chances for crack propagation and carbon nanotube breakage. The SIF is found to vary nonlinearly with the diameter of the SWCNT. Also, it is found that the predicted crack evolution, failure stresses, and failure strains of the nanotubes correlate very well with molecular mechanics simulations from literature.

1.
Ratner
,
M.
, and
Ratner
,
D.
, 2003,
Nanotechnology: A Gentle Introduction to the Next Big Idea
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Goddard
,
W. A.
, III
,
Brenner
,
D. W.
,
Lyshevski
,
S. E.
, and
Iafrate
,
G. J.
, 2003,
Handbook of Nanoscience, Engineering, and Technology
,
CRC
,
New York
.
3.
Ajayan
,
P. M.
,
Schadler
,
L. S.
, and
Braun
,
P. V.
, 2003,
Nanocomposite Science and Technology
,
Wiley-VCH
,
Weinheim
.
4.
Dunlap
,
B. I.
, 1994, “
Relating Carbon Tubules
,”
Phys. Rev. B
0556-2805,
49
, pp.
5643
5651
.
5.
Joshi
,
A. Y.
,
Bhatnagar
,
A.
,
Harsha
,
S. P.
, and
Sharma
,
S. C.
, 2010, “
Vibration Response Analysis of Doubly Clamped Single Walled Wavy Carbon Nanotube Based Nano Mechanical Sensors
,”
ASME J. Nanotechnol. Eng. Med.
,
1
(
3
), p.
031004
.
6.
Joshi
,
A. Y.
,
Harsha
,
S. P.
, and
Sharma
,
S. C.
, 2010, “
The Effect of Pinhole Defect on Dynamic Characteristics of Single Walled Carbon Nanotube Based Mass Sensor
,”
J. Comput. Theor. Nanosci.
1546-1955, unpublished.
7.
Joshi
,
A. Y.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
, 2010, “
Dynamic Behaviour of Chiral Fixed-Free Single Walled Carbon Nanotube Based Nano Mechanical Sensors Due to Atomic Vacancies
,”
Proc. Inst. Mech. Eng., Part N: Nanoeng. Nanosyst.
, unpublished.
8.
Joshi
,
A. Y.
,
Harsha
,
S. P.
, and
Sharma
,
S. C.
, 2010, “
Vibration Signature Analysis of Single Walled Carbon Nanotube Based Nano Mechanical Sensors
,”
Physica E (Amsterdam)
1386-9477,
42
(
8
), pp.
2115
2123
.
9.
Joshi
,
A. Y.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
, 2010, “
Dynamic Analysis of a Clamped Wavy Single Walled Carbon Nanotube Based Nano Mechanical Sensors
,”
ASME J. Nanotechnol. Eng. Med.
,
1
(
3
), p.
031007
.
10.
Ebbesen
,
T. W.
, and
Takada
,
T.
, 1995, “
Topological and sp3 Defect Structures in Nanotubes
,”
Carbon
0008-6223,
33
(
7
), pp.
973
978
.
11.
Chandra
,
N.
,
Namilae
,
S.
, and
Shet
,
C.
, 2004, “
Local Elastic Properties of Carbon Nanotubes in the Presence of Stone–Wales Defects
,”
Phys. Rev. B
0556-2805,
69
, p.
094101
.
12.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
, 2002, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
0556-2805,
65
, p.
235430
.
13.
Mielke
,
S. L.
,
Troya
,
D.
,
Zhang
,
S.
,
Li
,
J. -L.
,
Xiao
,
S.
,
Car
,
R.
,
Ruoff
,
R. S.
,
Schatz
,
G. C.
, and
Belytschko
,
T.
, 2004, “
The Role of Vacancy Defects and Holes in the Fracture of Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614,
390
, pp.
413
420
.
14.
Liew
,
K. M.
,
He
,
X. Q.
, and
Wong
,
C. H.
, 2004, “
On the Study of Elastic and Plastic Properties of Multi-Walled Carbon Nanotubes Under Axial Tension Using Molecular Dynamics Simulations
,”
Acta Mater.
1359-6454,
52
, pp.
2521
2527
.
15.
Mohammadi
,
S.
, 2008,
Extended Finite Element Method for Fracture Analysis of Structures
,
Blackwell
,
Malden, MA
.
16.
Shih
,
C. F.
, and
Asaro
,
R. J.
, 1988, “
Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
299
316
.
17.
Barnett
,
D. M.
, and
Asaro
,
R. J.
, 1972, “
The Fracture Mechanics of Slit-Like Cracks in Anisotropic Elastic Media
,”
J. Mech. Phys. Solids
0022-5096,
20
, pp.
353
366
.
18.
Duarte
,
C.
, and
Oden
,
J.
, 1995, “
HP Clouds a Mesh Less Method to Solve Boundary-Value Problems
,” TICAM, Technical Report No. 95-05.
19.
Melenk
,
J. M.
, and
Babuska
,
I.
, 1996, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
(
1-4
), pp.
289
314
.
20.
Dolbow
,
J.
, 1999, “
An Extended Finite Element Method With Discontinuous Enrichment for Applied Mechanics
,” Ph.D. thesis, Northwestern University, Evanston, IL.
21.
Dolbow
,
J.
,
Moes
,
N.
, and
Belytschko
,
T.
, 2000, “
Discontinuous Enrichment Infinite Elements With a Partition of Unity Method
,”
Finite Elem. Anal. Design
0168-874X,
36
, pp.
235
260
.
22.
Moёs
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
, 1999, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
131
150
.
23.
Sukumar
,
N.
,
Moes
,
N.
,
Moran
,
B.
, and
Belytschko
,
T.
, 2000, “
Extended Finite Element Method for Three-Dimensional Crack Modeling
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
(
1549–1570
), pp.
289
314
.
24.
Strouboulis
,
T.
,
Babuska
,
I.
, and
Copps
,
K.
, 2000, “
The Design and Analysis of the Generalized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
181
, pp.
43
69
.
25.
Strouboulis
,
T.
,
Babuska
,
I.
, and
Copps
,
K.
, 2001, “
The Generalized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4081
4193
.
26.
Strouboulis
,
T.
,
Babuska
,
I.
, and
Copps
,
K.
, 2000, “
The Generalised Finite Element Method: An Example of Its Implementation and Illustration of Its Performance
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
, pp.
1401
1417
.
27.
Duarte
,
C.
,
Babuska
,
I.
, and
Oden
,
J.
, 2000, “
Generalized Finite Element Methods for Three Dimensional Structural Mechanics Problems
,”
Comput. Struct.
0045-7949,
77
, pp.
215
232
.
28.
Osher
,
S.
, and
Sethian
,
J.
, 1988, “
Fronts Propagating With Curvature Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations
,”
J. Comput. Phys.
0021-9991,
79
, pp.
12
49
.
29.
Oswald
,
J.
,
Gracie
,
R.
,
Khare
,
R.
, and
Belytschko
,
T.
, 2009, “
An Extended Finite Element Method for Dislocations in Complex Geometries: Thin Films and Nanotubes
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
1872
1886
.
30.
Ding
,
F.
,
Jiao
,
K.
,
Wu
,
M. Q.
, and
Yakobson
,
B. I.
, 2007, “
Pseudoclimb and Dislocation Dynamics in Superplastic Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
98
(
7
), p.
075503
31.
Huang
,
J. Y.
,
Chen
,
S.
,
Wang
,
Z. Q.
,
Kempa
,
K.
,
Wang
,
Y. M.
,
Jo
,
S. H.
,
Chen
,
G.
,
Dresselhaus
,
M. S.
, and
Ren
,
Z. F.
, 2006, “
Superplastic Carbon Nanotubes—Conditions Have Been Discovered That Allow Extensive Deformation of Rigid Single-Walled Nanotubes
,”
Nature (London)
0028-0836,
439
(
7074
), pp.
281
282
.
32.
Tserpes
,
K. I.
,
Papanikos
,
P.
, and
Tsirkas
,
S. A.
, 2006, “
A Progressive Fracture Model for Carbon Nanotubes
,”
Composites, Part B
1359-8368,
37
, pp.
662
669
.
33.
Yu
,
M. -F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
, 2000, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
, pp.
637
640
.
You do not currently have access to this content.