The purpose of this study is to demonstrate particle separation through a novel mechanism termed as “time series alternate flow” using a microdevice as it is a real challenge to separate particles with a narrow size range (i.e., 110μm or smaller), especially achieving particles separation through the hydrodynamic method without the help from additional flow or force fields. High fidelity computational fluid dynamics with particle trajectory approach was employed for simulations. Particle separation of different sizes in the range 210μm size was achieved by operating the microdevice at various actuating frequencies. The results obtained indicated that the proposed mechanism is feasible for particle separation of multiple sizes. Our novel mechanism proposed potentially represents a viable microtechnological approach for particle separation in many drug delivery applications.

1.
Saliba
,
A. E.
,
Saias
,
L.
,
Psychari
,
E.
,
Minc
,
N.
,
Simon
,
D.
,
Bidard
,
F. C.
,
Mathiot
,
C.
,
Piergac
,
J.
,
Salamero
,
V. J.
,
Saada
,
V.
,
Vielh
,
P.
,
Malaquin
,
L.
, and
Viov
,
J.
, 2010, “
Microfluidic Sorting and Multimodal Typing of Cancer Cells in Self-Assembled Magnetic Arrays
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
107
(
33
), pp.
14524
14529
.
2.
Di Carlo
,
D.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
, 2007, “
Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
(
48
), pp.
18892
18897
.
3.
Sudarsan
,
A. P.
, and
Ugaz
,
V. M.
, 2006, “
Multivortex Micromixing
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
, pp.
7228
7233
.
4.
Huang
,
L. R.
,
Cox
,
E. C.
,
Austin
,
R.
, and
Sturm
,
J. C.
, 2004, “
Continuous Particle Separation Through Deterministic Lateral Displacement
,”
Science
0036-8075,
304
, pp.
987
990
.
5.
Ueno
,
Y.
,
Horiuchi
,
T.
,
Morimoto
,
T.
, and
Niwa
,
O.
, 2001, “
Microfluidic Device for Airborne BTEX Detection
,”
Anal. Chem.
0003-2700,
73
, pp.
4688
4693
.
6.
Porter
,
J.
,
Deere
,
D.
,
Hardman
,
M.
,
Edwards
,
C.
, and
Pickup
,
R.
, 1997, “
Go With the Flow—Use of Flow Cytometry in Environmental Microbiology
,”
FEMS Microbiol. Ecol.
0168-6496,
2
, pp.
93
101
.
7.
Hinds
,
W. C.
, 1999,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley
,
New York
.
8.
Greve
,
B.
,
Valet
,
G.
,
Humpe
,
A.
,
Tonn
,
T.
, and
Cassens
,
U.
, 2004, “
Flow Cytometry in Transfusion Medicine: Development, Strategies and Applications
,”
Transfus. Med. Hemother.
,
31
, pp.
152
61
.
9.
Levin
,
S.
,
Nudelman
,
R.
,
Reschiglian
,
P.
, and
Pasti
,
L. J.
, 1995, “
Simulation of Fractograms of Fat Emulsions in Power-Programmed Sedimentation Field-Flow Fractionation (Sdfff)
,”
J. Pharm. Biomed. Anal.
0731-7085,
13
, pp.
869
877
.
10.
Gunasekera
,
T. S.
,
Attfield
,
P. V.
, and
Veal
,
D. A.
, 2000, “
A Flow Cytometry Method for Rapid Detection and Enumeration of Total Bacteria in Milk
,”
Appl. Environ. Microbiol.
0099-2240,
66
, pp.
1228
32
.
11.
Dolnik
,
V.
, and
Novotny
,
M. V.
, 1993, “
Separation of Amino Acid Homopolymers by Capillary Gel Electrophoresis
,”
Anal. Chem.
0003-2700,
65
, pp.
563
567
.
12.
Brown
,
M.
, and
Wittwer
,
C.
, 2000, “
Flow Cytometry: Principles and Clinical Applications in Hematology
,”
Clin. Chem.
0009-9147,
46
, pp.
1221
1229
.
13.
Murakami
,
Y.
, and
Maeda
,
M.
, 2003, “
Novel Gene Assay by Probe-Regulated Simultaneous Separation Using Capillary Electrophoresis (CE-PRESS)
,”
J. Biosci. Bioeng.
1389-1723,
96
, pp.
95
97
.
14.
van Oudenaarden
,
A.
, and
Boxer
,
S. G.
, 1999, “
Brownian Ratchets: Molecular Separations in Lipid Bilayers Supported on Patterned Arrays
,”
Science
0036-8075,
285
, pp.
1046
1048
.
15.
Chou
,
C. F.
,
Bakajin
,
O.
,
Turner
,
S. W.
,
Duke
,
T. A.
,
Chan
,
S. S.
,
Cox
,
E. C.
,
Craighead
,
H. G.
, and
Austin
,
R. H.
, 1999, “
Sorting by Diffusion: An Asymmetric Obstacle Course for Continuous Molecular Separation
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
, pp.
13762
13765
.
16.
Blom
,
M. T.
,
Chmela
,
E.
,
Oosterbroek
,
R. E.
,
Tijssen
,
R.
, and
Berg
,
A.
, 2003, “
On-Chip Hydrodynamic Chromatography Separation and Detection of Nanoparticles and Biomolecules
,”
Anal. Chem.
0003-2700,
75
, pp.
6761
6768
.
17.
Giddings
,
J. C.
, 1993, “
Field-Flow Fractionation: Analysis of Macromolecular, Colloidal, and Particulate Materials
,”
Science
0036-8075,
260
, pp.
1456
1465
.
18.
Radko
,
S. P.
,
Stastna
,
M.
, and
Chrambach
,
A.
, 2000, “
Size-Dependent Electrophoretic Migration and Separation of Liposomes by Capillary Zone Electrophoresis in Electrolyte Solutions of Various Ionic Strengths
,”
Anal. Chem.
0003-2700,
72
, pp.
5955
5960
.
19.
Schrum
,
D. P.
,
Culbertson
,
C. T.
,
Jacobson
,
S. C.
, and
Ramsey
,
J. M.
, 1999, “
Microchip Flow Cytometry Using Electrokinetic Focusing
,”
Anal. Chem.
0003-2700,
71
, pp.
4173
4177
.
20.
Hjertén
,
S.
,
Elenbring
,
K.
,
Kilár
,
F.
,
Liao
,
J. L.
,
Chen
,
A. J.
,
Siebert
,
C. J.
, and
Zhu
,
M. D.
, 1987, “
Carrier-Free Zone Electrophoresis, Displacement Electrophoresis and Isoelectric Focusing in a High-Performance Electrophoresis Apparatus
,”
J. Chromatogr. A
,
403
, pp.
47
61
.
21.
Yasuda
,
K.
,
Umemura
,
S.
, and
Takeda
,
K.
, 1995, “
Concentration and Fractionation of Small Particles in Liquid by Ultrasound
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
34
, pp.
2715
2720
.
22.
Petersson
,
F.
,
Aberg
,
L.
,
Nilsson
,
A.
, and
Laurell
,
T.
, 2007, “
Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation
,”
Anal. Chem.
0003-2700,
79
, pp.
5117
5123
.
23.
Petersson
,
F.
,
Nilsson
,
A.
,
Jonsson
,
H.
, and
Laurell
,
T.
, 2005, “
Carrier Medium Exchange Through Ultrasonic Particle Switching in Microfluidic Channels
,”
Anal. Chem.
0003-2700,
77
, pp.
1216
1221
.
24.
Edwards
,
T.
,
Gale
,
B. K.
, and
Frazier
,
A. B.
, 2002, “
A Microfabricated Thermal Field-Flow Fractionation System
,”
Anal. Chem.
0003-2700,
74
, pp.
1211
1216
.
25.
Gale
,
B. K.
,
Caldwell
,
K. D.
, and
Frazier
,
A. B.
, 1998, “
A Micromachined Electrical Field-Flow Fractionation (Mu-EFFF) System
,”
IEEE Trans. Biomed. Eng.
0018-9294,
45
, pp.
1459
1469
.
26.
Pamme
,
N.
, and
Manz
,
A.
, 2004, “
On-Chip Free-Flow Magnetophoresis: Continuous Flow Separation of Magnetic Particles and Agglomerates
,”
Anal. Chem.
0003-2700,
76
, pp.
7250
7256
.
27.
MacDonald
,
M. P.
,
Spalding
,
G. C.
, and
Dholakia
,
K.
, 2003, “
Microfluidic Sorting in an Optical Lattice
,”
Nature (London)
0028-0836,
426
, pp.
421
424
.
28.
Kralj
,
J. G.
,
Lis
,
M. T.
,
Schmidt
,
M. A.
, and
Jensen
,
K. F.
, 2006, “
Continuous Dielectrophoretic Size-Based Particle Sorting
,”
Anal. Chem.
0003-2700,
78
, pp.
5019
5025
.
29.
Baret
,
J. C.
,
Miller
,
O. J.
,
Taly
,
V.
,
Ryckelynck
,
M.
,
El-Harrak
,
A.
,
Frenz
,
L.
,
Rick
,
C.
,
Samuels
,
M. L.
,
Hutchison
,
J. B.
,
Agresti
,
J. J.
,
Link
,
D. R.
,
Weitz
,
D. A.
, and
Griffiths
,
A. D.
, 2009, “
Fluorescence-Activated Droplet Sorting (FADS): Efficient Microfluidic Cell Sorting Based on Enzymatic Activity
,”
Lab Chip
1473-0197,
9
, pp.
1850
1858
.
30.
Abdelgawad
,
M.
,
Watson
,
M. W.
, and
Wheeler
,
A. R.
, 2009, “
Hybrid Microfluidics: A Digital-to-Channel Interface for In-Line Sample Processing and Chemical Separations
,”
Lab Chip
1473-0197,
9
, pp.
1046
1051
.
31.
Braschler
,
T.
,
Demierre
,
N.
,
Nascimento
,
E.
,
Silva
,
T.
,
Oliva
,
A. G.
, and
Renaud
,
P.
, 2008, “
Continuous Separation of Cells by Balanced Dielectrophoretic Forces at Multiple Frequencies
,”
Lab Chip
1473-0197,
8
, pp.
280
286
.
32.
Pohl
,
H. A.
, 1951, “
The Motion and Precipitation of Suspensoids in Divergent Electric Fields
,”
J. Appl. Phys.
0021-8979,
22
(
7
), pp.
869
871
.
33.
Hawkins
,
B. G.
,
Smith
,
A. E.
,
Syed
,
Y. A.
, and
Kirby
,
B. J.
, 2007, “
Continuous-Flow Particle Separation by 3d Insulative Dielectrophoresis Using Coherently Shaped, Dc-Biased, Ac Electric Fields
,”
Anal. Chem.
0003-2700,
79
, pp.
7291
7300
.
34.
Markx
,
G. H.
, and
Pethig
,
R.
, 1995, “
Dielectrophoretic Separation of Cells-Continuous Separation. Biotechnology and Bioengineering
,”
Biotechnol. Bioeng.
0006-3592,
45
, pp.
337
343
.
35.
Su
,
G.
, and
Pidaparti
,
R. M.
, 2010, “
Drug Particle Delivery Investigation Through a Valveless Micropump
,”
J. Microelectromech. Syst.
1057-7157,
19
, pp.
1390
1399
.
36.
Cartin
,
C.
,
Pidaparti
,
R. M.
, and
Atkinson
,
G. M.
, 2008, “
Design and Fabrication of a PDMS Micropump With Moving Membranes
,”
Proceedings of the 2008 University, Government, and Industry Micro-Nano Symposium
, Jul. 13–16, 2008, Louisville, KY.
37.
Su
,
G.
, and
Pidaparti
,
R. M.
, 2009, “
Transport of Drug Particles in Micropumps Through Novel Actuation
,”
Microsyst. Technol.
0946-7076,
16
, pp.
595
606
.
38.
Crowe
,
C. T.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
, 1998,
Multiphase Flows With Droplets and Particles
,
CRC
,
Boca Raton, FL
.
You do not currently have access to this content.