In this study, in vivo animal experiments are performed on implanted xenograph prostatic tumors in nude mice to investigate enhanced laser energy absorption in the tumors by an intratumoral injection of gold nanorod solutions. In vivo temperature mapping of the tumors during laser photothermal therapy has shown the feasibility of elevating tumor temperatures higher than 50 °C using only 0.1 ml nanorod solution and a low laser irradiance of 1.6 W/cm2 incident on the tumor surface. The temperature profile suggests that normal tumor tissue still absorbs some amount of the laser energy without nanorod presence; however, the injected nanorods ensure that almost all the laser energy is absorbed and confined to the targeted tumors. The inverse relationship between the temperature elevations and the tumor size implies a relatively uniform spreading of the nanorods to the entire tumor, which is also shown by microcomputed tomography (microCT) imaging analyses. The feasibility of detecting 250 OD gold nanorod solution injected to the tumors is demonstrated via a high resolution microCT imaging system. Compared to other nanostructures, the gold nanorods used in this study do not accumulate surrounding the injection site. The relatively uniform deposition of the nanorods in the tumors observed by the microCT scans can be helpful in future study in simplifying theoretical simulation of temperature elevations in tumors during laser photothermal therapy.

References

1.
Lal
,
S.
,
Clare
,
S. E.
, and
Halas
,
N. J.
,
2008
, “
Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact
,”
Acc. Chem. Res.
,
41
(
12
), pp.
1842
1851
.10.1021/ar800150g
2.
Skrabalak
,
S. E.
,
Chen
,
J.
,
Lu
,
X.
,
Li
,
X.
, and
Xia
,
Y.
,
2007
, “
Gold Nanocages for Biomedical Applications
,”
Adv. Mater.
,
19
, pp.
3177
3184
.10.1002/adma.200701972
3.
Reidenbach
,
H.-D.
,
2007
, “
Laser Safety
,”
Springer Handbook of Laser and Optics
,
F.
Traeger
, ed.,
Springer
,
New York
.
4.
Bernardi
,
R. J.
,
Lowery
,
A. R.
,
Thompson
,
P. A.
,
Blaney
,
S. M.
, and
West
,
J. L.
,
2008
, “
Immunonanoshells for Targeted Photothermal Ablation in Medulloblastoma and Glioma: An In Vitro Evaluation Using Human Cell Lines
,”
J. Neuro-Oncol.
,
86
(
2
), pp.
165
172
.10.1007/s11060-007-9467-3
5.
El-Sayed
,
I. H.
,
Huang
,
X.
, and
El-Sayed
,
M. A.
,
2006
, “
Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles
,”
Cancer Lett.
,
239
, pp.
129
135
.10.1016/j.canlet.2005.07.035
6.
Gobin
,
A. M.
,
Moon
,
J. J.
, and
West
,
J. L.
,
2008
, “
EphrinAl-Targeted Nanoshells for Photothermal Ablation of Prostate Cancer Cells
,”
Int. J. Nanomed.
,
3
(
3
), pp.
351
358
.
7.
Melancon
,
M. P.
,
Lu
,
W.
,
Yang
,
Z.
,
Zhang
,
R.
,
Cheng
,
Z.
,
Elliot
,
A. M.
,
Stafford
,
J.
,
Olson
,
T.
,
Zhang
,
J. Z.
, and
Li
,
C.
,
2008
, “
In Vitro and In Vivo Targeting of Hollow Gold Nanoshells Directed at Epidermal Growth Factor Receptor for Photothermal Ablation Therapy
,”
Mol. Cancer Ther.
,
7
(
6
), pp.
1730
1739
.10.1158/1535-7163.MCT-08-0016
8.
Norman
,
R. S.
,
Stone
,
J. W.
,
Gole
,
A.
,
Murphy
,
C. J.
, and
Sabo-Attwood
,
T. L.
,
2008
, “
Targeted Photothermal Lysis of the Pathogenic Bacteria, Pseudomonas Aeruginosa, With Gold Nanorods
,”
Nano Lett.
,
8
(
1
), pp.
302
306
.10.1021/nl0727056
9.
Whitney
,
J.
,
Dorn
,
H.
,
Rylander
,
C.
,
Campbell
,
T.
,
Geohegan
,
D.
, and
Rylander
,
M. N.
,
2010
, “
Spatiotemporal Temperature and Cell Viability Measurement Following Laser Therapy in Combination With Carbon Nanohorns
,”
Proceedings of the ASME Summer Bioengineering Engineering Conference, Naples, FL, June 16–19, ASME
Paper No. SBC2010-19619.
10.
O'Neal
,
D. P.
,
Hirsch
,
L. R.
,
Halas
,
N. J.
,
Payne
,
J. D.
, and
West
,
J. L.
,
2004
, “
Photo-Thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles
,”
Cancer Lett.
,
209
, pp.
171
176
.10.1016/j.canlet.2004.02.004
11.
Stern
,
J. M.
,
Stanfield
,
J.
,
Kabbani
,
W.
,
Hsieh
,
J. T.
, and
Cadeddu
,
J. A.
,
2008
, “
Selective Prostate Cancer Thermal Ablation With Laser Activated Gold Nanoshells
,”
J. Urol.
,
179
, pp.
748
753
.10.1016/j.juro.2007.09.018
12.
Hirsch
,
L. R.
,
Stafford
,
R. J.
,
Bankson
,
J. A.
,
Sershen
,
S. R.
,
Rivera
,
B.
,
Price
,
R. E.
,
Hazle
,
J. D.
,
Halas
,
N. J.
, and
West
,
J. L.
,
2003
, “
Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance
,”
PNAS
,
100
(
23
), pp.
13549
13554
.10.1073/pnas.2232479100
13.
Qin
,
Z.
, and
Bischof
,
J. C.
,
2010
, “
One Dimensional Experimental Setup to Study the Heating of Nanoparticle Laden Systems
,”
Proceedings of the ASME Summer Bioengineering Engineering Conference, Naples, FL, June 16–19, ASME
Paper No. SBC2010-19676.
14.
Schwartz
,
J. A.
,
Shetty
,
A. M.
,
Price
,
R. E.
,
Stafford
,
R. J.
,
Wang
,
J. C.
,
Uthamanthil
,
R. K.
,
Pham
,
K.
,
McNichols
,
R. J.
,
Coleman
,
C. L.
, and
Payne
,
J. D.
,
2009
, “
Feasibility Study of Particle-Assisted Laser Ablation of Brain Tumors in Orthotopic Canine Model
,”
Cancer Res.
,
69
(
4
), pp.
1659
1667
.10.1158/0008-5472.CAN-08-2535
15.
Stafford
,
R. J.
,
Shetty
,
A.
,
Elliott
,
A. M.
,
Schwartz
,
J. A.
,
Goodrich
,
G. P.
, and
Hazle
,
J. D.
,
2011
, “
MR Temperature Imaging of Nanoshell Mediated Laser Ablation
,”
Int. J. Hyperthermia
,
27
(
8
), pp.
782
790
.10.3109/02656736.2011.614671
16.
Elliott
,
A. M.
,
Stafford
,
R. J.
,
Schwartz
,
J.
,
Wang
,
J.
,
Shetty
,
A. M.
,
Bourgoyne
,
C.
,
O'Neal
,
P.
, and
Hazle
,
J. D.
,
2007
, “
Laser-Induced Thermal Response and Characterization of Nanoparticles for Cancer Treatment Using Magnetic Resonance Thermal Imaging
,”
Med. Phys.
,
34
, pp.
3102
3108
.10.1118/1.2733801
17.
Xie
,
H.
,
Gill-Sharp
,
K. L.
, and
O'Neal
,
D. P.
,
2007
, “
Quantitative Estimation of Gold Nanoshell Concentrations in Whole Blood Using Dynamic Light Scattering
,”
Nanomed.: Nanotechnol., Biol., Med.
,
3
, pp.
89
94
.10.1016/j.nano.2007.01.003
18.
Attaluri
,
A.
,
Ma
,
R.
,
Qiu
,
Y.
,
Li
,
W.
, and
Zhu
,
L.
,
2011
, “
Nanoparticle Distribution and Temperature Elevations in Prostatic Tumors in Mice During Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
,
27
(
5
), pp.
491
502
.10.3109/02656736.2011.584856
19.
Feng
,
Y.
,
Fuentes
,
D.
,
Hawkins
,
A.
,
Bass
,
J.
,
Rylander
,
M.
,
Elliott
,
A.
,
Shetty
,
A.
,
Stafford
,
R.
, and
Oden
,
J.
,
2009
, “
Nanoshell-Mediated Laser Surgery Simulation for Prostate Cancer Treatment
,”
J. Eng. Comput.
,
25
, pp.
3
13
.10.1007/s00366-008-0109-y
20.
Pluen
,
A.
,
Boucher
,
Y.
,
Ramanujan
,
S.
,
McKee
,
T. D.
,
Gohongi
,
T.
,
di Tomaso
,
E.
,
Brown
,
E. B.
,
Izumi
,
Y.
,
Campbell
,
R. B.
,
Berk
,
D. A.
, and
Jain
,
R. K.
, “
Role of Tumor–Host Interactions in Interstitial Diffusion of Macromolecules: Cranial vs. Subcutaneous Tumors
,”
PNAS
,
98
, pp.
4628
4633
.10.1073/pnas.081626898
21.
Attaluri
,
A.
,
Manuchehrabadi
,
N.
,
Ma
,
R.
, and
Zhu
,
L.
,
2011
, “
Quantification of Nanostructure Distribution in Tissue Using MicroCT Imaging
,”
Proceedings of the ASME Summer Bioengineering Conference, Farmington, PA
, June 22–25, ASME Paper No. SBC2011-53182.
22.
Attaluri
,
A.
,
Ma
,
R.
, and
Zhu
,
L.
,
2011
, “
Using MicroCT Imaging Technique to Quantify Heat Generation Distribution Induced by Magnetic Nanoparticles for Cancer Treatments
,”
ASME J. Heat Transfer
,
133
(
1
), p.
011003
.10.1115/1.4002225
23.
Salloum
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
,
2008
, “
An In-Vivo Experimental Study of Temperature Elevations in Animal Tissue During Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperthermia
,
24
(
7
), pp.
589
601
.10.1080/02656730802203377
24.
Salloum
,
M.
,
Ma
,
R.
,
Weeks
,
D.
, and
Zhu
,
L.
,
2008
, “
Controlling Nanoparticle Delivery in Hyperthermia for Cancer Treatment: Experimental Study in Agarose Gel
,”
Int. J. Hyperthermia
,
24
(
4
), pp.
337
345
.10.1080/02656730801907937
25.
Salloum
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
,
2009
, “
Enhancement in Treatment Planning for Magnetic Nanoparticle Hyperthermia: Optimization of the Heat Absorption Pattern
,”
Int. J. Hyperthermia
,
25
(
4
), pp.
309
321
.10.1080/02656730902803118
26.
Chen
,
Y.
,
Ma
,
R.
, and
Zhu
,
L.
,
2011
, “
Monte Carlo Simulation of Enhanced Laser Absorption in Tumors With Gold Nanorod Injection
,” Proceedings of the ASME Summer Bioengineering Conference, Farmington, PA, June 22–25, ASME Paper No. SBC2011-53598.
You do not currently have access to this content.