The feasibility of utilizing focused ultrasonic waves for the nondestructive evaluation of porosity content in curved corner sections of carbon fiber reinforced plastic (CFRP) laminate structures is investigated numerically as well as experimentally. For this purpose, two-dimensional (2D) finite element simulations are carried out to clarify the wave propagation behavior and the reflection characteristics when the nonfocused or focused ultrasonic wave impinges on the corner section of unidirectional and quasi-isotropic CFRP laminates from the inner side via water. The corresponding reflection measurements are carried out for the CFRP corner specimens in the pulse-echo mode using nonfocusing, point-focusing, and line-focusing transducers. The numerical simulations and the experiments show that the use of focused ultrasonic waves is effective in obtaining clearly distinguishable surface and bottom echoes from the curved corner section of CFRP laminates. The influence of the porosity content on the reflection waveforms obtained with different types of transducers is demonstrated experimentally. The experimental results indicate that the porosity content of the CFRP corner section can be evaluated based on the amplitude ratio of the surface and bottom echoes obtained with focusing transducers, if the calibration relation is appropriately established for different ply stacking sequences.

References

1.
Reynolds
,
W. N.
, and
Wilkinson
,
S. J.
,
1978
, “
The Analysis of Fibre-Reinforced Porous Composite Materials by the Measurement of Ultrasonic Wave Velocities
,”
Ultrasonics
,
16
(
4
), pp.
159
163
.
2.
Hsu
,
K.
, and
Jeong
,
H.
,
1989
, “
Ultrasonic Velocity Change and Dispersion Due to Porosity in Composite Laminates
,”
Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
8B
, Springer, New York, pp.
1567
1573
.
3.
Komsky
,
I. N.
,
Daniel
,
I. M.
, and
Wooh
,
S. C.
,
1993
, “
Characterization of Porosity in Thick Composites Using Ultrasonic Wave Velocity Measurements
,”
Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
12A
, Plenum Press, New York, pp.
1273
1280
.
4.
Stone
,
D. E. W.
, and
Clarke
,
B.
,
1975
, “
Ultrasonic Attenuation as a Measure of Void Content in Carbon Fibre Reinforced Plastics
,”
Non-Destr. Test.
,
8
(
3
), pp.
137
145
.
5.
Hale
,
J. M.
, and
Ashton
,
J. N.
,
1988
, “
Ultrasonic Attenuation in Voided Fibre-Reinforced Plastics
,”
NDT Int.
,
21
(
5
), pp.
321
326
.
6.
Daniel
,
I. M.
,
Wooh
,
S. C.
, and
Komsky
,
I.
,
1992
, “
Quantitative Porosity Characterization of Composite Materials by Means of Ultrasonic Attenuation Measurements
,”
J. Nondestr. Eval.
,
11
(
1
), pp.
1
8
.
7.
Guo
,
N.
, and
Cawley
,
P.
,
1994
, “
The Non-Destructive Assessment of Porosity in Composite Repairs
,”
Composites
,
25
(
9
), pp.
842
850
.
8.
Jeong
,
H.
,
1997
, “
Effects of Voids on the Mechanical Strength and Ultrasonic Attenuation of Laminated Composites
,”
J. Compos. Mater.
,
31
(
3
), pp.
276
292
.
9.
Birt
,
E. A.
, and
Smith
,
R. A.
,
2004
, “
A Review of NDE Methods for Porosity Measurement in Fibre-Reinforced Polymer Composites
,”
Insight
,
46
(
11
), pp.
681
686
.
10.
Park
,
J.-W.
,
Kim
,
D.-J.
,
Im
,
K.-H.
,
Park
,
S.-K.
,
Hsu
,
D. K.
,
Kite
,
A. H.
,
Kim
,
S.-K.
,
Lee
,
K. S.
, and
Yang
,
I.-Y.
,
2008
, “
Ultrasonic Influence of Porosity Level on CFRP Composite Laminates Using Rayleigh Probe Waves
,”
Acta Mech. Solida Sin.
,
21
(
4
), pp.
298
307
.
11.
Lin
,
L.
,
Zhang
,
X.
,
Chen
,
J.
,
Mu
,
Y.
, and
Li
,
X.
,
2011
, “
A Novel Random Void Model and Its Application in Predicting Void Content of Composites Based on Ultrasonic Attenuation Coefficient
,”
Appl. Phys. A
,
103
(
4
), pp.
1153
1157
.
12.
Dominguez
,
N.
, and
Mascaro
,
B.
,
2006
, “
Ultrasonic Non-Destructive Inspection of Localized Porosity in Composite Materials
,”
Ninth European Conference on Non-Destructive Testing
(
ECNDT
), Berlin, Sept. 25–29.
13.
Grolemund
,
D.
, and
Tsai
,
C.
,
1998
, “
Statistical Moments of Backscattered Ultrasound in Porous Fiber Reinforced Composites
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
45
(
2
), pp.
295
304
.
14.
Kim
,
K. B.
,
Hsu
,
D. K.
, and
Barnard
,
D. J.
,
2013
, “
Estimation of Porosity Content of Composite Materials by Applying Discrete Wavelet Transform to Ultrasonic Backscattered Signal
,”
NDT E Int.
,
56
, pp.
10
16
.
15.
Ishii
,
Y.
,
Biwa
,
S.
, and
Kuraishi
,
A.
,
2016
, “
Influence of Porosity on Ultrasonic Wave Velocity, Attenuation and Interlaminar Interface Echoes in Composite Laminates: Finite Element Simulations and Measurements
,”
Compos. Struct.
,
152
, pp.
645
653
.
16.
Deydier
,
S.
,
Gengembre
,
N.
,
Calmon
,
P.
,
Mengeling
,
V.
, and
Pétillon
,
O.
,
2005
, “
Ultrasonic Field Computation Into Multilayered Composite Materials Using a Homogenization Method Based on Ray Theory
,”
AIP Conf. Proc.
,
760
(
1
), pp.
1057
1064
.
17.
Journiac
,
S.
,
Leymarie
,
N.
,
Dominguez
,
N.
, and
Potel
,
C.
,
2011
, “
Simulation of Ultrasonic Inspection of Composite Using Bulk Waves: Application to Curved Components
,”
J. Phys. Conf. Ser.
,
269
(
1
), p.
012022
.
18.
Dominguez
,
N.
,
Grellou
,
O.
, and
Van-der-Veen
,
S.
,
2010
, “
Simulation of Ultrasonic NDT in Composite Radius
,”
Tenth European Conference on Non-Destructive Testing
(
ECNDT
), Moscow, Russia, June 7–11, Paper No. 1.10.41.
19.
Xu
,
N.
, and
Zhou
,
Z.
,
2014
, “
Numerical Simulation and Experiment for Inspection of Corner-Shaped Components Using Ultrasonic Phased Array
,”
NDT E Int.
,
63
, pp.
28
34
.
20.
Ito
,
J.
,
Biwa
,
S.
,
Hayashi
,
T.
, and
Kuraishi
,
A.
,
2015
, “
Ultrasonic Wave Propagation in the Corner Section of Composite Laminate Structure: Numerical Simulations and Experiments
,”
Compos. Struct.
,
123
, pp.
78
87
.
21.
Rokhlin
,
S. I.
, and
Wang
,
W.
,
1992
, “
Double Through-Transmission Bulk Wave Method for Ultrasonic Phase Velocity Measurement and Determination of Elastic Constants of Composite Materials
,”
J. Acoust. Soc. Am.
,
91
(
6
), pp.
3303
3312
.
22.
Ishii
,
Y.
, and
Biwa
,
S.
,
2015
, “
Transmission of Ultrasonic Waves at Oblique Incidence to Composite Laminates With Spring-Type Interlayer Interfaces
,”
J. Acoust. Soc. Am.
,
138
(
5
), pp.
2800
2810
.
23.
Ishii
,
Y.
, and
Biwa
,
S.
,
2017
, “
Ultrasonic Wave Transmission and Bandgap in Multidirectional Composite Laminates With Spring-Type Interlayer Interfaces
,”
J. Acoust. Soc. Am.
,
141
(
2
), pp.
1099
1110
.
24.
Wu
,
P.
, and
Stepinski
,
T.
,
2000
, “
Quantitative Estimation of Ultrasonic Attenuation in a Solid in the Immersion Case With Correction of Diffraction Effects
,”
Ultrasonics
,
38
(
1–8
), pp.
481
485
.
You do not currently have access to this content.