Abstract

Martensitic grade stainless-steel is generally used to manufacture steam turbine blades in power plants. The material degradation of those turbine blades, due to fatigue, will induce unexpected equipment damage. Fatigue cracks, too small to be detected, can grow severely in the next operating cycle and may cause failure before the next inspection opportunity. Therefore, a nondestructive electromagnetic technique, which is sensitive to microstructure changes in the material, is needed to provide a means to estimate the specimen’s fatigue life. To tackle these challenges, this paper presents a novel magnetic Barkhausen noise (MBN) technique for garnering information relating to the material microstructure changes under test. The MBN signals are analyzed in time as well as frequency domain to infer material information that are influenced by the samples’ material state. Principal component analysis (PCA) is applied to reduce the dimensionality of feature data and extract higher order features. Afterward, probabilistic neural network (PNN) classifies the sample based on the percentage fatigue life to discover the most correlated MBN features to indicate the remaining fatigue life. Furthermore, one criticism of MBN is its poor repeatability and stability, therefore, analysis of variance (ANOVA) is carried out to analyze the uncertainty associated with MBN measurements. The feasibility of MBN technique is investigated in detecting early-stage fatigue, which is associated with plastic deformation in ferromagnetic metallic structures. Experimental results demonstrate that the magnetic Barkhausen noise technique is a promising candidate for characterizing.

References

1.
Baddoo
,
N.
,
2008
, “
Stainless Steel in Construction: A Review of Research, Applications, Challenges and Opportunities
,”
J. Constr. Steel Res.
,
64
(
11
), pp.
1199
1206
.
2.
Yao
,
J.
,
Wang
,
L.
,
Zhang
,
Q.
,
Kong
,
F.
,
Lou
,
C.
, and
Chen
,
Z.
,
2008
, “
Surface Laser Alloying of 174ph Stainless Steel Steam Turbine Blades
,”
Opt. Laser Technol.
,
40
(
6
), pp.
838
843
.
3.
Lee
,
Y.-L.
,
Barkey
,
M. E.
, and
Kang
,
H.-T.
,
2011
,
Metal Fatigue Analysis Handbook: Practical Problem-Solving Techniques for Computer-Aided Engineering
,
Elsevier
,
New York
.
4.
Xin
,
Q.
,
2013
, “
Durability and Reliability in Diesel Engine System Design
,”
Diesel Engine Syst. Des.
, pp.
113
202
.
5.
Zhang
,
W.
,
Zhou
,
Z.
,
Zhang
,
B.
, and
Zhao
,
S.
,
2015
, “
A Phenomenological Fatigue Life Prediction Model of Glass Fiber Reinforced Polymer Composites
,”
Mater. Des.
,
66
(1980–2015), pp.
77
81
.
6.
Böl
,
M.
,
Stark
,
H.
, and
Schilling
,
N.
,
2011
, “
On a Phenomenological Model for Fatigue Effects in Skeletal Muscles
,”
J. Theor. Biol.
,
281
(
1
), pp.
122
132
.
7.
Baktheer
,
A.
, and
Chudoba
,
R.
,
2019
, “
Classification and Evaluation of Phenomenological Numerical Models for Concrete Fatigue Behavior Under Compression
,”
Construct. Building Mater.
,
221
, pp.
661
677
.
8.
Chan
,
K. S.
,
2010
, “
Roles of Microstructure in Fatigue Crack Initiation
,”
Int. J. Fatigue
,
32
(
9
), pp.
1428
1447
.
9.
Lo
,
C. C.
, and
Nakagawa
,
N.
,
2009
, “Effects of Dynamic and Static Loading on Eddy Current NDE of Fatigue Cracks,”
AIP Conference Proceedings, Vol. 1096
,
American Institute of Physics
, pp.
355
362
.
10.
Kordatos
,
E.
,
Aggelis
,
D.
, and
Matikas
,
T.
,
2012
, “
Monitoring Mechanical Damage in Structural Materials Using Complimentary NDE Techniques Based on Thermography and Acoustic Emission
,”
Compos. Part B: Eng.
,
43
(
6
), pp.
2676
2686
.
11.
Shen
,
G.
,
Zheng
,
Y.
, and
Zhang
,
J.
,
2015
, “
Fatigue State Evaluation of Ferromagnetic Material Using Magnetic Barkhausen Noise
,”
Stud. Appl. Electromagn. Mech.
,
40
, pp.
76
84
.
12.
Vaidhianathasamy
,
M.
,
Shaw
,
B. A.
,
Bennett
,
W.
, and
Hopkins
,
P.
,
2008
, “
Evaluation of Contact Fatigue Damage on Gears Using the Magnetic Barkhausen Noise Technique
,”
Proc. 12th Int. Workshop Electromag. Nondestruct. Eval.
, pp.
98
105
.
13.
Perez-Benitez
,
J. A.
,
Capó-Sánchez
,
J.
,
Anglada-Rivera
,
J.
, and
Padovese
,
L. R.
,
2005
, “
A Model for the Influence of Microstructural Defects on Magnetic Barkhausen Noise in Plain Steels
,”
J. Magn. Magn. Mater.
,
288
, pp.
433
442
.
14.
Ghanei
,
S.
,
Kashefi
,
M.
, and
Mazinani
,
M.
,
2014
, “
Comparative Study of Eddy Current and Barkhausen Noise Nondestructive Testing Methods in Microstructural Examination of Ferritemartensite Dual-Phase Steel
,”
J. Magn. Magn. Mater.
,
356
, pp.
103
110
.
15.
Miesowicz
,
K.
,
Staszewski
,
W. J.
, and
Korbiel
,
T.
,
2016
, “
Analysis of Barkhausen Noise Using Wavelet-Based Fractal Signal Processing for Fatigue Crack Detection
,”
Int. J. Fatigue
,
83
, pp.
109
116
.
16.
Tomkowski
,
R.
,
Sorsa
,
A.
,
Santa-aho
,
S.
,
Lundin
,
P.
, and
Vippola
,
M.
,
2019
, “
Statistical Evaluation of Barkhausen Noise Testing (BNT) for Ground Samples
,”
Sensors
,
19
(
21
), p.
4716
.
17.
Stupakov
,
O.
,
Pal’a
,
J.
,
Takagi
,
T.
, and
Uchimoto
,
T.
,
2009
, “
Governing Conditions of Repeatable Barkhausen Noise Response
,”
J. Magn. Magn. Mater.
,
321
(
18
), pp.
2956
2962
.
18.
Li
,
Z.
,
2019
,
Deep Learning Techniques for Magnetic Flux Leakage Inspection With Uncertainty Quantification
,
Michigan State University
.
19.
Zhang
,
S.
,
Shi
,
X.
,
Udpa
,
L.
, and
Deng
,
Y.
,
2018
, “
Micromagnetic Measurement for Characterization of Ferromagnetic Materials’ Microstructural Properties
,”
AIP Adv.
,
8
(
5
), p.
056614
.
20.
Vashista
,
M.
, and
Moorthy
,
V.
,
2015
, “
On the Shape of the Magnetic Barkhausen Noise Profile for Better Revelation of the Effect of Microstructures on the Magnetisation Process in Ferritic Steels
,”
J. Magn. Magn. Mater.
,
393
, pp.
584
592
.
21.
Moorthy
,
V.
,
Vaidyanathan
,
S.
,
Jayakumar
,
T.
, and
Raj
,
B.
,
1998
, “
On the Influence of Tempered Microstructures on Magnetic Barkhausen Emission in Ferritic Steels
,”
Philos. Mag. A
,
77
(
6
), pp.
1499
1514
.
22.
Wang
,
P.
,
Zhu
,
L.
,
Zhu
,
Q.
,
Ji
,
X.
,
Wang
,
H.
,
Tian
,
G.
, and
Yao
,
E.
,
2013
, “
An Application of Back Propagation Neural Network for the Steel Stress Detection Based on Barkhausen Noise Theory
,”
Ndt E Int.
,
55
, pp.
9
14
.
23.
Wold
,
S.
,
Esbensen
,
K.
, and
Geladi
,
P.
,
1987
, “
Principal Component Analysis
,”
Chemom. Intell. Lab. Syst.
,
2
(
1–3
), pp.
37
52
.
24.
Burrascano
,
P.
,
Cardelli
,
E.
,
Faba
,
A.
,
Fiori
,
S.
, and
Massinelli
,
A.
,
2001
, “
Application of Probabilistic Neural Networks to Eddy Current non Destructive Test Problems
,”
EANN 2001 Conference
, pp.
16
18
.
25.
Kanemoto
,
S.
,
2009
, “
Acoustic Monitoring Using Kernel PCA and Probabilistic Neural Network
,”
7th International Conference on NDE.
26.
Muscat
,
S.
,
Parks
,
S.
,
Kemp
,
E.
, and
Keating
,
D.
,
2002
, “
Repeatability and Reproducibility of Macular Thickness Measurements With the Humphrey OCT System
,”
Invest. Ophthalmol. Visual Sci.
,
43
(
2
), pp.
490
495
.
27.
Taylor
,
B. N.
,
2009
,
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results rev
,
Diane Publishing
.
You do not currently have access to this content.