Abstract

Ultrasonic nondestructive testing traditionally uses a conventional monolithic transducer. An approach similar to this comprising of independent single transmissions but with reception performed by all the elements in phased array ultrasonics is known as full matrix capture (FMC). The acquired data are processed by total focusing method (TFM). Conventional FMC-TFM has limitations in the inspection at large depth in attenuating materials due to single element transmission. To improve the beamforming process, coherent recombination of the plane wave with specific angles is utilized in transmission and the same aperture is used for the reception in plane wave imaging (PWI). A new methodology called angle beam virtual source FMC-TFM (ABVSFMC-TFM) is proposed to inspect thick attenuating materials such as nickel-base alloys. The ABVSFMC method leads to improved signal-to-noise ratio (SNR) as compared to the conventional FMC due to increased energy with directivity during transmission using a group of elements and improved divergence as compared to the PWI due to a small virtual source near the sample surface. In the present paper, FMC-TFM, PWI-TFM, and ABVSFMC-TFM methods are compared for the inspection of thick nickel-base superalloy (Alloy 617) with slots at various depths in the range of 25–200 mm. Optimization of the incidence angle has been performed by beam computation in civa software. Results obtained by civa simulations are discussed and also compared for the three methods.

References

1.
Holmes
,
C.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2008
, “
Advanced Post-processing for Scanned Ultrasonic Arrays: Application to Defect Detection and Classification in Non-destructive Evaluation
,”
Ultrasonics
,
48
(
6–7
), pp.
636
642
.
2.
Holmes
,
C.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2005
, “
Post-processing of the Full Matrix of Ultrasonic Transmit–Receive Array Data for Non-destructive Evaluation
,”
NDT & E Int.
,
38
(
8
), pp.
701
711
.
3.
Nanekar
,
P.
,
Kumar
,
A.
, and
Jayakumar
,
T.
,
2015
, “
Characterization of Planar Flaws by Synthetic Focusing of Sound Beam Using Linear Arrays
,”
Case Stud. Nondestr. Test. Eval.
,
3
, pp.
9
14
.
4.
Karaman
,
M.
,
Li
,
P.-C.
, and
O'Donnell
,
M.
,
1995
, “
Synthetic Aperture Imaging for Small Scale Systems
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
42
(
3
), pp.
429
442
.
5.
Sutcliffe
,
M.
,
Weston
,
M.
,
Charlton
,
P.
,
Dutton
,
B.
, and
Donne
,
K.
,
2012
, “
Virtual Source Aperture Imaging for Non-destructive Testing
,”
Insight-Non-Destr. Test. Cond. Monit.
,
54
(
7
), pp.
371
379
.
6.
Sutcliffe
,
M.
,
Charlton
,
P.
, and
Weston
,
M.
,
2014
, “
Multiple Virtual Source Aperture Imaging for Non-destructive Testing
,”
Insight-Non-Destr. Test. Cond. Monit.
,
56
(
2
), pp.
75
81
.
7.
Alavudeen
,
S.
,
Krishnamurthy
,
C.
, and
Balasubramaniam
,
K.
,
2011
, “
Technique for Imaging Using Virtual Array of Sources (TIVAS)
,”
AIP Conference Proceedings
,
San Diego, CA
,
July 18–23
, pp.
1687
1694
.
8.
Bannouf
,
S.
,
Robert
,
S.
,
Casula
,
O.
, and
Prada
,
C.
,
2013
, “
Data Set Reduction for Ultrasonic TFM Imaging Using the Effective Aperture Approach and Virtual Sources
,”
J. Phys.: Conf. Series
,
457
, p.
012007
.
9.
Zhang
,
X.
,
Guo
,
J.
,
Luo
,
X.
,
Gao
,
X.
,
Wang
,
Z.
,
Zhao
,
Q.
, and
Zheng
,
B.
,
2014
, “
Defect Detection Study on Total Focus Method of Sound Field Imaging Based on Parallel Processing. in Nondestructive Evaluation/Testing (FENDT)
,”
Proceedings of 2014 IEEE Far East Forum on
,
Chengdu, China
,
June 20–23
, pp.
112
116
.
10.
Lookwood
,
G.
, and
Foster
,
F. S.
,
1996
, “
Optimizing the Radiation Pattern of Sparse Periodic Two-Dimensional Arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
43
(
1
), pp.
15
19
.
11.
Spencer
,
R.
,
Sunderman
,
R.
, and
Todorov
,
E.
,
2018
, “
FMC/TFM Experimental Comparisons
,”
AIP Conf. Proc
,
37
, pp.
020015-1
020015-5
.
12.
Long
,
R.
,
Russell
,
J.
,
Cawley
,
P.
, and
Habgood
,
N.
,
2009
, “
Ultrasonic Phased Array Inspection of Flaws on Weld Fusion Faces Using Full Matrix Capture
,”
AIP Conference Proceedings
,
28
, pp.
848
855
.
13.
Le Jeune
,
L.
,
Robert
,
S.
, and
Prada
,
C.
,
2016
, “
Plane Wave Imaging for Ultrasonic Inspection of Irregular Structures with High Frame Rates
,”
AIP Conference Proceedings
,
1706
, p.
020010
.
14.
Le Jeune
,
L.
,
Robert
,
S.
,
Villaverde
,
E. L.
, and
Prada
,
C.
,
2015
, “
Multimodal Plane Wave Imaging for Non-destructive Testing
,”
2015 ICU International Congress on Ultrasonics
,
70
, pp.
570
573
.
15.
Matrone
,
G.
,
Savoia
,
A. S.
,
Caliano
,
G.
, and
Magenes
,
G.
,
2016
, “
Ultrasound Plane-Wave Imaging With Delay Multiply and Sum Beamforming and Coherent Compounding
,”
Engineering in Medicine and Biology Society (EMBC), Proceedings of 2016 IEEE 38th Annual International Conference
,
IEEE
, pp.
3223
3226
.
16.
Le Jeune
,
L.
,
Robert
,
S.
,
Lopez Villaverde
,
E.
, and
Prada
,
C.
,
2016
, “
Plane Wave Imaging for Ultrasonic Non-Destructive Testing: Generalization to Multimodal Imaging
,”
Ultrasonics
,
64
, pp.
128
138
.
17.
Long
,
R.
,
Russell
,
J.
, and
Cawley
,
P.
,
2010
, “
Through-Weld Ultrasonic Phased Array Inspection Using Full Matrix Capture
,”
AIP Come. Proc.
,
1211
(
1
), pp.
918
925
.
18.
Payão Filho
,
J.
,
Passos
,
E.
,
Gonzaga
,
R.
,
Ferreira
,
R.
,
Santos
,
D.
, and
Juliano
,
D.
,
2018
, “
Ultrasonic Inspection of a 9% Ni Steel Joint Welded With Ni-Based Superalloy 625: Simulation and Experimentation
,”
Metals
,
8
(
10
), p.
787
.
19.
Mahaut
,
S.
,
Darmon
,
M.
,
Chatillon
,
S.
,
Jenson
,
F.
, and
Calmon
,
P.
,
2009
, “
Recent Advances and Current Trends of Ultrasonic Modelling in CIVA
,”
Insight-Non-Destr. Test. Cond. Monit.
,
51
(
2
), pp.
78
81
.
20.
Dorval
,
V.
,
Darmon
,
M.
,
Chatillon
,
S.
, and
Fradkin
,
L.
,
2015
, “
Simulation of the UT Inspection of Planar Defects Using a Generic GTD-Kirchhoff Approach
,”
AIP Conf. Proc.
,
1650
(
1
), pp.
1750
1756
.
21.
Mahaut
,
S.
,
Lonne
,
S.
, and
De Roumilly
,
L.
,
2006
,
ECNDT
,
Berlin, Germany
,
Sept. 25–29
.
22.
Nanekar
,
P.
,
Kumar
,
A.
, and
Jayakumar
,
T.
,
2015
, “
SAFT-Assisted Sound Beam Focusing Using Phased Arrays (PA-SAFT) for Non-Destructive Evaluation
,”
Nondestr. Test. Eval.
,
30
(
2
), pp.
105
123
.
You do not currently have access to this content.