Abstract

Steam turbine blades are the important components in power system shaft lines subjected to severe temperatures, leading to low/high cycle fatigue failures. The transient conditions occurring during startup and shutdown events generate alternative stresses causing the fracture at the blade roots. The present work deals with the effect of localized damage on the vibration characteristics and damage identification study in the last stage low-pressure (LP) steam turbine blade. Initially, free vibration studies and transient analysis of the last row LP blade section are conducted using the finite element model. A crack near the root region is modeled by a torsional spring, whose stiffness is expressed in terms of crack depth ratio. Effects of crack depth ratio and location near the roots on the natural frequencies and transient response amplitudes are studied in detail. The relationship between the damage parameters and blade frequencies is established through the backpropagation neural network model.

References

1.
Carnegie
,
W.
,
1959
, “
Vibration of Pre-Twisted Cantilever Blading
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
343
374
.
2.
Subrahmanyam
,
K. B.
,
Kulkarni
,
S. V.
, and
Rao
,
J. S.
,
1981
, “
Coupled Bending–Bending Vibration of Pre-Twisted Cantilever Blading Allowing for Shear Deflection and Rotary Inertia by the Reissner Method
,”
Int. J. Mech. Sci.
,
23
(
9
), pp.
517
530
.
3.
Houbolt
,
J. C.
, and
Brooks
,
G. W.
,
1958
, “
Differential Equations of Motion for Combined Flapwise Bending Chordwise Bending and Torsion of Twisted Non-Uniform Rotor Blades
,”
NACA Report
, pp.
13
46
. https://ntrs.nasa.gov/api/citations/19930092334/downloads/19930092334.pdf.
4.
Yardimoglu
,
B.
, and
Yildirim
,
T.
,
2004
, “
Finite Element Model for Vibration Analysis of Pre-Twisted Timoshenko Beam
,”
J. Sound Vib.
,
273
(
4–5
), pp.
741
754
.
5.
Karadaǧ
,
V.
,
1984
, “
Dynamic Analysis of Practical Blades With Shear Center Effect
,”
J. Sound Vib.
,
92
(
4
), pp.
471
490
.
6.
Bhagi
,
L. K.
,
Rastogi
,
V.
,
Gupta
,
P.
, and
Pradhan
,
S.
,
2018
, “
Dynamic Stress Analysis of L-1 Low Pressure Steam Turbine Blade: Mathematical Modelling and Finite Element Method
,”
Mater. Today: Proc.
,
5
(
14
), pp.
28117
28126
.
7.
Rosard
,
D.
, and
Lester
,
P.
,
1999
, “
Natural Frequency of Twisted Cantilever Beam
,”
ASME J. Appl. Mech.
,
20
(
2
), pp.
241
244
.
8.
Chen
,
Y.
,
Zhang
,
J.
, and
Zhang
,
H.
,
2017
, “
Free Vibration Analysis of Rotating Tapered Timoshenko Beams Via Variational Iteration Method
,”
J. Vib. Contr.
,
23
(
2
) pp.
220
234
.
9.
Shetkar
,
K. A. D. R.
, and
Srinivas
,
J.
,
2021
, “
Analytical Modeling and Vibration Analysis of the Last-Stage LP Steam Turbine Blade Made of Functionally Graded Material
,”
Arabian J. Sci. Eng.
,
46
(
8
), pp.
7363
7377
.
10.
Hoa
,
S. V.
,
1979
, “
Vibration of a Rotating Beam With Tip Mass
,”
J. Sound Vib.
,
67
(
3
), pp.
369
381
.
11.
Sarkar
,
K.
, and
Ganguli
,
R.
,
2014
, “
Modal Tailoring and Closed-Form Solutions for Rotating Non-Uniform Euler–Bernoulli Beams
,”
Int. J. Mech. Sci.
,
88
, pp.
208
220
.
12.
Sina
,
S.
, and
Haddadpour
,
H.
,
2014
, “
Axial-Torsional Vibrations of Rotating Pretwisted Thin Walled Composites Beams
,”
Int. J. Mech. Sci.
,
80
, pp.
93
101
.
13.
Chandiramani
,
N.
,
Shete
,
C.
, and
Librescu
,
L.
,
2003
, “
Vibration of Higher-Order-Shearablepretwisted Rotating Composite Blades
,”
Int. J. Mech. Sci.
,
45
(
12
), pp.
2017
2041
.
14.
Yoo
,
H. H.
,
Kwak
,
J. Y.
, and
Chung
,
J.
,
2001
, “
Vibration Analysis of Rotating Pre-Twisted Blades With a Concentrated Mass
,”
J. Sound Vib.
,
240
(
5
), pp.
891
908
.
15.
Na
,
S.
,
Librescu
,
L.
, and
Shim
,
K.
,
2003
, “
Modeling and Bending Vibration Control of Non-Uniform Thin-Walled Rotating Beams Incorporating Adaptive Capabilities
,”
Int. J. Mech. Sci.
,
45
(
8
), pp.
1347
1367
.
16.
Chen
,
C. K.
, and
Ho
,
S. H.
,
1999
, “
Transverse Vibration of a Rotating Twisted Timoshenko Beams Under Axial Loading Using Differential Transform
,”
Int. J. Mech. Sci.
,
41
(
11
), pp.
1339
1356
.
17.
Chan
,
S. K.
, and
Tuba
,
I. S.
,
1971
, “
A Finite Element Method for Contact Problems for Solid Bodies—Part II: Applications to Turbine Blade Fastenings
,”
Int. J. Mech. Sci.
,
13
(
7
), pp.
627
639
.
18.
Zboiński
,
G.
,
1993
, “
Finite Element Computer Program for Incremental Analysis of Large Three-Dimensional Frictional Contact Problems of Linear Elasticity
,”
Comp. Struc.
,
46
(
4
), pp.
679
687
.
19.
Zboinski
,
G.
,
1995
Physical and Geometrical Non-Linearities in Contact Problems of Elastic Turbine Blade Attachments
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
209
(
4
), pp.
273
286
.
20.
Papanikos
,
P.
,
Meguid
,
S. A.
, and
Stjepanovic
,
Z.
,
1998
, “
Three Dimensional Nonlinear Finite Element Analysis of Dovetail Joints in Aero-Engine Discs
,”
Finite Elem. Anal. Des.
,
29
(
3/4
), pp.
173
186
.
21.
Meguid
,
S. A.
,
Kanth
,
P. S.
, and
Czekanski
,
A.
,
2000
, “
Finite Element Analysis of fir-Tree Region in Turbine Disk
,”
Finite Elem. Anal. Des.
,
35
(
4
), pp.
305
317
.
22.
Dhar
,
D.
,
Sharan
,
A. M.
, and
Rao
,
J. S.
,
2004
, “
Transient Stress Analysis and Fatigue Life Estimation of Turbine Blades
,”
ASME J. Vib. Acoust.
,
126
(
4
), pp.
485
495
.
23.
Shukla
,
A.
, and
Harsha
,
S. P.
,
2016
, “
Vibration Response Analysis of Last Stage LP Turbine Blades for Variable Size of Crack in Root
,”
Proc. Tech.
,
23
, pp.
232
239
.
24.
Wang
,
W. Z.
,
Xuan
,
F. Z.
,
Zhu
,
K. L.
, and
Tu
,
S. T.
,
2007
, “
Failure Analysis of the Final Stage Blade in Steam Turbine
,”
Eng. Fail Anal.
,
14
(
4
), pp.
632
641
.
25.
Mazur
,
Z.
,
Illescas
,
R. G.
,
Romano
,
J. A.
, and
Rodriguez
,
N. P.
,
2008
, “
Steam Turbine Blade Failure Analysis
,”
Eng. Fail. Anal.
,
15
(
1–2
), pp.
129
141
.
26.
Yashar
,
A.
,
Ferguson
,
N.
, and
Tehrani
,
M. G.
,
2018
, “
Simplified Modelling and Analysis of a Rotating Euler-Bernoulli Beam With a Single Cracked Edge
,”
J. Sound Vib.
,
420
, pp.
346
356
.
27.
Dimarogonas
,
A. D.
,
Paipetis
,
S. A.
, and
Chondros
,
T. G.
,
2013
,
Analytical Methods in Rotor Dynamics
,
Springer
,
Dordrecht, The Netherlands
.
28.
Liu
,
W.
, and
Barkey
,
M. E.
,
2018
, “
Effects of Breathing Behaviour on Crack Growth of a Vibrating Beam
,”
J. Shock Vib.
,
2018
, pp.
1
12.
.
29.
Cunningham
,
B. M. D.
,
Evangelou
,
A.
,
You
,
C.
,
Morris
,
A.
,
Wise
,
J.
,
Philippa
,
A. S.
,
Andrew
,
R.
, and
Hamilton
,
R.
,
2021
, “
Fatigue Crack Initiation and Growth Behavior in a Notch With Periodic Overloads in the Low-Cycle Fatigue Regime of FV566 Ex-Service Steam Turbine Blade Material
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
2
), pp.
546
564
30.
Sing
,
S.
,
Kharub
,
M.
,
Singh
,
J.
, and
Jangid
,
V.
,
2021
, “
Brief Survey on Mechanical Failure and Preventive Mechanism of Turbine Blades
,”
Mater. Today: Proc.
,
38
, pp.
2515
1524
.
31.
Skorupa
,
M.
,
1998
, “
Load Interaction Effects During Fatigue Crack Growth Under Variable Amplitude Loading—A Literature Review. Part I: Empirical Trends
,”
Fatigue Fract. Eng. Mater. Struct.
,
21
(
8
), pp.
987
1006
.
32.
Zhou
,
X.
,
Gaenser
,
H.-P.
, and
Pippan
,
R.
,
2016
, “
The Effect of Single Overloads in Tension and Compression on the Fatigue Crack Propagation Behaviour of Short Cracks
,”
Int. J. Fatigue
,
89
, pp.
77
86
.
33.
Ward-Close
,
C. M.
,
Blom
,
A. F.
, and
Ritchie
,
R. O.
,
1989
, “
Mechanisms Associated With Transient Fatigue Crack Growth Under Variable-Amplitude Loading: An Experimental and Numerical Study
,”
Eng. Fract. Mech.
,
32
(
4
), pp.
613
638
.
34.
Bhamu
,
R. K.
,
Shukla
,
A.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2021
, “
Dynamic Analysis of Low-Pressure Steam Turbine Last Stage fir-Tree Root Blade
,”
ASME J. Nondestr. Eval., Diagn. Progn. Eng. Syst.
,
4
(
2
), p.
021002
.
35.
Taheri
,
F.
,
Trask
,
D.
, and
Pegg
,
N.
,
2003
, “
Experimental and Analytical Investigation of Fatigue Characteristics of 350WT Steel Under Constant and Variable Amplitude Loadings
,”
Mar. Struct.
,
16
(
1
), pp.
69
91
.
36.
Rodriguez
,
J. A.
,
Hamzaoui
,
Y. E.
,
Hernandez
,
J. A.
,
Garcia
,
J. C.
,
Flores
,
J. E.
, and
Tejeda
,
A. L.
,
2013
, “
The Use of Artificial Neural Network (ANN) for Modeling the Useful Life of the Failure Assessment in Blades of Steam Turbines
,”
Eng. Failure Anal.
,
35
, pp.
562
575
.
37.
Quintanar-Gago
,
D. A.
,
Nelson
,
P. F.
,
Díaz-Sánchez
,
A.
, and
Boldrick
,
M. S.
,
2021
, “
Assessment of Steam Turbine Blade Failure and Damage Mechanisms Using a Bayesian Network
,”
Reliab. Eng. Syst. Safety.
,
207
, p.
107329
.
38.
Song
,
W.
,
Keane
,
A. J.
,
Rees
,
J.
,
Bhaskar
,
A. and
Bagnall
,
S.
,
2002
, “
Turbine Blade fir-Tree Root Design Optimization Using Intelligent CAD and Finite Element Analysis
,”
Comput. Struct.
,
80
(
24
), pp.
1853
1867
.
39.
Przemieniecki
,
J. S.
,
1968
,
Theory of Matrix Structural Analysis
,
McGraw-Hill Book Company, Inc.
,
New York
.
40.
Griffiths
,
D. V.
,
1989
, “
Advantages of Consistent Over Lumped Methods for Analysis of Beams on Elastic Foundations
,”
Commun. Appl. Numer. Meth.
,
5
(
1
), pp.
53
60
.
41.
Lanzi
,
A.
, and
Luco
,
J.
,
2017
, “
Caughey Damping Series in Terms of Products of the Flexibility Matrix
,”
J. Eng. Mech.
,
143
(
9
).
42.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1994
, “
A Family of Single-Step Houbolt Time Integration Algorithms for Structural Dynamics
,”
Comput. Meth. Appl. Mech. Eng.
,
118
(1–2), pp.
1
11
.
43.
Kagdi
,
F.
, and
Mungla
,
M.
,
2019
, “
Review Paper on Crack Modeling and Crack Detection Methods
,”
Int. J. Eng. Res. Tech.
,
8
(
07
).
44.
Broek
,
D.
,
1986
,
Elementary Engineering Fracture Mechanics
,
Martinus Nijhoff Publishers
,
Dordrecht, The Netherlands
.
45.
Cabán
,
P.
,
Masters
,
F. J.
, and
Phillips
,
B. M.
,
2018
, “
Predicting Roof Pressures on a Low-Rise Structure From Freestream Turbulence Using Artificial Neural Networks
,”
Front. Built Environ.
, online.
You do not currently have access to this content.