Abstract

Nondestructive testing has become an essential part of the maintenance of modern gas turbine blades and vanes since it provides an increase in both safety against critical failure and efficiency of operation. Targeted repairs of the blade's airfoil require localized wall thickness information. This information, however, is hard to obtain by nondestructive testing due to the complex shapes of surfaces, cavities, and material characteristics. To address this problem, we introduce an automated nondestructive testing system that scans the part using an immersed ultrasonic array probe guided by a robot arm. For imaging, we adopt a two-step, surface-adaptive Total Focusing Method (TFM) approach. For each test position, the TFM allows us to identify the outer surface, followed by calculating an adaptive image of the interior of the part, where the inner surface's position and shape are obtained. To handle the large volumes of data, the surface features are automatically extracted from the TFM images using specialized image processing algorithms. Subsequently, the collection of 2D extracted surface data is merged and smoothed in 3D space to form the outer and inner surfaces, facilitating wall thickness evaluation. With this approach, representative zones on two gas turbine vanes were tested, and the reconstructed wall thickness values were evaluated via comparison with reference data from an optical scan. For the test zones on two turbine vanes, average errors ranging from 0.05 mm to 0.1 mm were identified, with a standard deviation of 0.06–0.16 mm.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Chowdhury
,
T. S.
,
Mohsin
,
F. T.
,
Tonni
,
M. M.
,
Mita
,
M. N. H.
, and
Ehsan
,
M. M.
,
2023
, “
A Critical Review on Gas Turbine Cooling Performance and Failure Analysis of Turbine Blades
,”
Int. J. Thermofluids
,
18
(
1
), p.
100329
.
2.
Rao
,
N.
,
Kumar
,
N.
,
Prasad
,
B.
,
Madhulata
,
N.
, and
Gurajarapu
,
N.
,
2014
, “
Failure Mechanisms in Turbine Blades of a Gas Turbine Engine—An Overview
,”
Int. J. Eng. Res. Dev.
,
10
(
8
), pp.
48
57
.
3.
Burghardt
,
A.
,
Kurc
,
K.
,
Szybicki
,
D.
,
Muszyńska
,
M.
, and
Szczęch
,
T.
,
2017
, “
Robot-Operated Inspection of Aircraft Engine Turbine Rotor Guide Vane Segment Geometry
,”
Tech. Gaz.
,
24
(
2
), pp.
345
348
.
4.
Weber
,
W. H.
,
Mair
,
H. D.
,
Jansen
,
D.
, and
Lombardi
,
L.
,
2013
, “
Advances in Inspection Automation
,”
AIP Conf. Proc
,
1511
(
1
).
5.
Sattar
,
T.
,
2010
, “
Robotic non-Destructive Testing
,”
Ind. Rob.
,
37
(
5
), p.
420
.
6.
Sattar
,
T. P.
, and
Brenner
,
A. A.
,
2009
, “
Robotic System for Inspection of Test Objects With Unknown Geometry Using NDT Methods
,”
Ind. Rob.
,
36
(
4
), pp.
340
343
.
7.
Morozov
,
M.
,
Mineo
,
C.
,
Pierce
,
S. G.
,
Nicholson
,
P. I.
, and
Cooper
,
I.
,
2013
, “
Computer-Aided Tool Path Generation for Robotic Non-Destructive Inspection
,”
Conf. Br. Inst. Non-Destructive Test
,
Telford, UK
,
Sept. 10–12
.
8.
Mineo
,
C.
,
Pierce
,
S. G.
,
Wright
,
B.
,
Nicholson
,
P. I.
, and
Cooper
,
I.
,
2015
, “
Robotic Path Planning for Non-Destructive Testing of Complex Shaped Surfaces
,”
AIP Conf. Proc.
,
1650
(
1
), pp.
1977
1987
.
9.
Mineo
,
C.
,
Pierce
,
S. G.
,
Nicholson
,
P. I.
, and
Cooper
,
I.
,
2016
, “
Robotic Path Planning for Non-Destructive Testing—A Custom MATLAB Toolbox Approach
,”
Rob. Comput. Integr. Manuf.
,
37
(
1
), pp.
1
12
.
10.
Mineo
,
C.
,
Pierce
,
S. G.
,
Nicholson
,
P. I.
, and
Cooper
,
I.
,
2017
, “
Introducing a Novel Mesh Following Technique for Approximation-Free Robotic Tool Path Trajectories
,”
J. Comput. Des. Eng.
,
4
(
3
), pp.
192
202
.
11.
Seguin-Charbonneau
,
L.
,
Walter
,
J.
,
Dubois
,
P. O.
,
St-Jacques
,
D.
, and
Brassard
,
M.
,
2021
, “
Automated Path Generation for Robotic UT Inspection of CFRP Components
,”
12th International Symposium on NDT in Aerospace
,
Williamsburg, VA
,
Oct. 6–8
.
12.
Brassard
,
M.
,
Séguin-Charbonneau
,
L.
,
Walter
,
J.
, and
Cormier
,
G.
,
2023
, “
Automatic Methods for Ultrasonic Scanning Paths Generation
,”
Proceedings of the European Conference on Non-Destructive Testing (ECNDT)
,
1
(
1
).
13.
Riise
,
J.
,
Mineo
,
C.
,
Pierce
,
S. G.
,
Nicholson
,
P. I.
, and
Cooper
,
I.
,
2019
, “
Adapting Robot Paths for Automated NDT of Complex Structures Using Ultrasonic Alignment
,”
AIP Conf. Proc.
,
2102
(
1
), p.
040006
.
14.
Poole
,
A.
,
Sutcliffe
,
M.
,
Pierce
,
G.
, and
Gachagan
,
A.
,
2022
, “
Autonomous, Digital-Twin Free Path Planning and Deployment for Robotic NDT: Introducing LPAS: Locate, Plan, Approach, Scan Using Low Cost Vision Sensors
,”
Appl. Sci.
,
12
(
10
), p.
5288
.
15.
Vasilev
,
M.
,
MacLeod
,
C. N.
,
Loukas
,
C.
,
Javadi
,
Y.
,
Vithanage
,
R. K. W.
,
Lines
,
D.
,
Mohseni
,
E.
,
Pierce
,
S. G.
, and
Gachagan
,
A.
,
2021
, “
Sensor-Enabled Multi-Robot System for Automated Welding and In-Process Ultrasonic NDE
,”
Sensors
,
21
(
15
), p.
5077
.
16.
Mineo
,
C.
,
Pierce
,
S. G.
,
Wright
,
B.
,
Cooper
,
I
, and
Nicholson
,
P. I.
,
2015
, “
PAUT Inspection of Complex-Shaped Composite Materials Through Six DOFs Robotic Manipulators
,”
Insight-Non-Destr. Test. Cond. Monit.
,
57
(
3
), pp.
161
166
.
17.
Zhou
,
B.
,
Tian
,
T. T.
,
Zhu
,
G.
,
Zhao
,
J. B.
, and
Liu
,
D. H.
,
2022
, “
An Ultrasonic Testing Method for Wall Thickness of Turbine Blades
,”
Measurement
,
198
(
1
), p.
111357
.
18.
Frederick
,
J. R.
,
Fairchild
,
R.
, and
Anderson
,
B.
,
1977
, “
Improved Ultrasonic Nondestructive Testing of Pressure Vessels. Annual Progress Report, August 1, 1975–July 31, 1976
,” Michigan Univ., Ann Arbor (USA). Dept. of Mechanical Engineering.
19.
Schmitz
,
V.
,
Chakhlov
,
S.
, and
Müller
,
W.
,
2000
, “
Experiences With Synthetic Aperture Focusing Technique in the Field
,”
Ultrasonics
,
38
(
1
), pp.
731
738
.
20.
Macovski
,
A.
,
1979
, “
Ultrasonic Imaging Using Arrays
,”
Proc. IEEE
,
67
(
4
), pp.
484
495
.
21.
Defranould
,
P.
, and
Souquet
,
J.
,
1979
, “Ultrasonic Array Design and Performance,”
Echocardiology
,
C. T.
Lancée
, ed.,
Springer
,
Dordrecht, Netherlands
, pp.
395
412
.
22.
Clay
,
A. C.
,
Wooh
,
S.-C.
,
Azar
,
L.
, and
Wang
,
J.-Y.
,
1999
, “
Experimental Study of Phased Array Beam Steering Characteristics
,”
J. Nondestr. Eval.
,
18
(
2
), pp.
59
71
.
23.
Oralkan
,
O.
,
Ergun
,
A. S.
,
Johnson
,
J. A.
,
Karaman
,
M.
,
Demirci
,
U.
,
Kaviani
,
K.
,
Lee
,
T. H.
, and
Khuri-Yakub
,
B. T.
,
2002
, “
Capacitive Micromachined Ultrasonic Transducers: Next-Generation Arrays for Acoustic Imaging?
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
49
(
11
), pp.
1596
1610
.
24.
Holmes
,
C.
,
Drinkwater
,
B.
, and
Wilcox
,
P.
,
2004
, “
The Post-Processing of Ultrasonic Array Data Using the Total Focusing Method
,”
Insight-Non-Destr. Test. Cond. Monit.
,
46
(
11
), pp.
677
680
.
25.
Holmes
,
C.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2005
, “
Post-Processing of the Full Matrix of Ultrasonic Transmit–Receive Array Data for Non-Destructive Evaluation
,”
NDT&E Int.
,
38
(
8
), pp.
701
711
.
26.
Sutcliffe
,
M.
,
Weston
,
M.
,
Dutton
,
B.
,
Charlton
,
P.
, and
Donne
,
K.
,
2012
, “
Real-Time Full Matrix Capture for Ultrasonic Non-Destructive Testing With Acceleration of Post-Processing Through Graphic Hardware
,”
NDT&E Int.
,
51
(
1
), pp.
16
23
.
27.
Bannouf
,
S.
,
Robert
,
S.
,
Casula
,
O.
, and
Prada
,
C.
,
2013
, “
Data Set Reduction for Ultrasonic TFM Imaging Using the Effective Aperture Approach and Virtual Sources
,”
J. Phys. Conf. Ser.
,
457
(
1
), p.
012007
.
28.
Hunter
,
A. J.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2008
, “
The Wavenumber Algorithm for Full-Matrix Imaging Using an Ultrasonic Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
11
), pp.
2450
2462
.
29.
Zhang
,
J.
,
Drinkwater
,
B. W.
,
Wilcox
,
P. D.
, and
Hunter
,
A. J.
,
2010
, “
Defect Detection Using Ultrasonic Arrays: The Multi-Mode Total Focusing Method
,”
NDT&E Int.
,
43
(
2
), pp.
123
133
.
30.
Wilcox
,
P. D.
,
Holmes
,
C.
, and
Drinkwater
,
B. W.
,
2007
, “
Advanced Reflector Characterization With Ultrasonic Phased Arrays in NDE Applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
8
), pp.
1541
1550
.
31.
Holmes
,
C.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2008
, “
Advanced Post-Processing for Scanned Ultrasonic Arrays: Application to Defect Detection and Classification in Non-Destructive Evaluation
,”
Ultrasonics
,
48
(
6–7
), pp.
636
642
.
32.
Zhang
,
J.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2014
, “
Efficient Immersion Imaging of Components With Nonplanar Surfaces
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
61
(
8
), pp.
1284
1295
.
33.
Aschy
,
A.
,
Terrien
,
N.
,
Robert
,
S.
, and
Bentahar
,
M.
,
2017
, “
Enhancement of the Total Focusing Method Imaging for Immersion Testing of Anisotropic Carbon Fiber Composite Structures
,”
AIP Conf. Proc
,
1806
(
1
), p.
040005
.
34.
Mineo
,
C.
,
Lines
,
D.
, and
Cerniglia
,
D.
,
2021
, “
Generalised Bisection Method for Optimum Ultrasonic ray Tracing and Focusing in Multi-Layered Structures
,”
Ultrasonics
,
111
(
1
), p.
106330
.
35.
Zhang
,
J.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2013
, “
Comparison of Ultrasonic Array Imaging Algorithms for Nondestructive Evaluation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
60
(
8
), pp.
1732
1745
.
36.
Hopkins
,
D.
,
Neau
,
G.
, and
Le Ber
,
L.
,
2011
, “
Advanced Phased-Array Technologies for Ultrasonic Inspection of Complex Composite Parts
,”
Proc., Smart Materials, Structures, & NDT in Aerospace
,
Montreal, CA
,
Nov. 2–4
.
37.
Davì
,
S.
,
Mineo
,
C.
,
MacLeod
,
C.
,
Pierce
,
S. G.
,
Gachagan
,
A.
,
Paton
,
S.
,
Munro
,
G.
,
O'Brien-O'Reilly
,
J.
, and
McCubbin
,
C.
,
2020
, “
Correction of B-Scan Distortion for Optimum Ultrasonic Imaging of Backwalls With Complex Geometries
,”
Insight-Non-Destr. Test. Cond. Monit.
,
62
(
4
), pp.
184
191
.
38.
Russell
,
J.
,
Long
,
R.
,
Duxbury
,
D.
, and
Cawley
,
P.
,
2012
, “
Development and Implementation of a Membrane-Coupled Conformable Array Transducer for Use in the Nuclear Industry
,”
Insight-Non-Destr. Test. Cond. Monit.
,
54
(
7
), pp.
386
393
.
39.
Nakahata
,
K.
,
Tokumasu
,
S.
,
Sakai
,
A.
,
Iwata
,
Y.
,
Ohira
,
K.
, and
Ogura
,
Y.
,
2016
, “
Ultrasonic Imaging Using Signal Post-Processing for a Flexible Array Transducer
,”
NDT&E Int.
,
82
(
1
), pp.
13
25
.
40.
Deutsch
,
W. A. K.
,
2000
, “
Automated Ultrasonic Inspection
,”
Proceedings of the WCNDT Conference
,
Rome, Italy
,
Oct. 15–21
.
41.
Zhang
,
J.
,
Cho
,
Y.
,
Kim
,
J.
,
Malikov
,
A. K. U.
,
Kim
,
Y. H.
,
Yi
,
J.-H.
, and
Li
,
W.
,
2021
, “
Non-Destructive Evaluation of Coating Thickness Using Water Immersion Ultrasonic Testing
,”
Coatings
,
11
(
11
), p.
1421
.
42.
Le Jeune
,
L.
,
Robert
,
S.
,
Dumas
,
P.
,
Membre
,
A.
, and
Prada
,
C.
,
2015
, “
Adaptive Ultrasonic Imaging With the Total Focusing Method for Inspection of Complex Components Immersed in Water
,”
AIP Conf. Proc
,
1650
(
1
), pp.
1037
1046
.
43.
Parrilla
,
M.
,
Brizuela
,
J.
,
Camacho
,
J.
,
Ibanez
,
A.
,
Nevado
,
P.
, and
Fritsch
,
C.
,
2008
, “
Dynamic Focusing Through Arbitrary Geometry Interfaces
,”
2008 IEEE Ultrasonics Symposium
,
Beijing, China
,
Nov. 2–5
.
44.
McKee
,
J. G.
,
Bevan
,
R. L.
,
Wilcox
,
P. D.
, and
Malkin
,
R. E.
,
2020
, “
Volumetric Imaging Through a Doubly-Curved Surface Using a 2D Phased Array
,”
NDT&E Int.
,
113
(
1
), p.
102260
.
45.
Kerr
,
W.
,
Pierce
,
S. G.
, and
Rowe
,
P.
,
2016
, “
Investigation of Synthetic Aperture Methods in Ultrasound Surface Imaging Using Elementary Surface Types
,”
Ultrasonics
,
72
(
1
), pp.
165
176
.
46.
Le Bihan
,
Y.
,
Joubert
,
P. Y.
, and
Placko
,
D.
,
2001
, “
Wall Thickness Evaluation of Single-Crystal Hollow Blades by Eddy Current Sensor
,”
NDT&E Int.
,
34
(
5
), pp.
363
368
.
47.
Hastie
,
S.
,
Chan
,
A.
,
Wiens
,
K.
,
Nagy
,
D.
,
Tollett
,
R.
, and
Lowden
,
P.
,
2021
, “
Computed Tomography Wall Thickness Inspection to Support Gas Turbine Blade Life Extension
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy
,
7
(
1
), p.
V007T17A021
.
48.
Goldammer
,
M.
, and
Heinrich
,
W.
,
2006
, “
Active Thermography for Dimensional Measurements on gas Turbine Components
,”
9th European Conference on NDT
,
Berlin, Germany
,
Sept. 25–29
.
49.
Velichko
,
A.
, and
Wilcox
,
P. D.
,
2010
, “
An Analytical Comparison of Ultrasonic Array Imaging Algorithms
,”
J. Acoust. Soc. Am.
,
127
(
4
), pp.
2377
2384
.
50.
Hartigan
,
J. A.
, and
Wong
,
M. A.
,
1979
, “
Algorithm AS 136: A K-Means Clustering Algorithm
,”
J. R. Stat. Soc. C
,
28
(
1
), pp.
100
108
.
You do not currently have access to this content.