The current techniques in assessing the healing of a fixated fractured long bone, which include X-ray, computed tomography (CT), and manual manipulation, are qualitative and its accuracy depends on the surgeon's experience. A lack of a robust and quantitative monitoring method of fractured bone healing limits the survival of orthopedic implants and the ability to accurately predict and prevent fixation failure and complications. This paper experimentally and computationally investigates the efficacy and the potential application of a vibration-based quantitative monitoring methodology. This nonintrusive technique incorporates the cross-spectra response of externally placed sensors located remotely from the fractured region. In this study, the test specimens are composite femurs fixated with an intramedullary nail fixation system and the epoxy adhesive applied in the osteotomized region is used to simulate the healing process. Epoxies with a 30-min and 2 h gel time are used separately to investigate the sensitivity of this healing assessment technique. The findings highlight the key vibrational modes to establish the state of healing and the quantification evaluation of healing of fixated femurs based on a formulated healing index is also presented. This efficacy study seeks to verify the viability of this external measurement technique for human health monitoring and the future development of healing devices.

References

1.
Wu
,
C. C.
,
2006
, “
Treatment of Long-Bone Fractures, Malunions, and Nonunions: Experience at Chang Gung Memorial Hospital, Taoyuan, Taiwan
,” ,
29
(
4
), pp.
347
357
.
2.
Bourgois
,
R.
, and
Burny
,
F.
,
1972
, “
Measurement of Stiffness of Fracture Callus in-Vivo—Theoretical Study
,”
J. Biomech.
,
5
(
1
), pp.
85
91
.
3.
Cunningham
,
J. L.
,
Kenwright
,
J.
, and
Kershaw
,
C. J.
,
1990
, “
Biomechanical Measurement of Fracture-Healing
,”
J. Med. Eng. Technol.
,
14
(
3
), pp.
92
101
.
4.
Morshed
,
S.
,
2014
, “
Current Options for Determining Fracture Union
,”
Adv. Med.
,
2014
, p.
708574
.
5.
Bull
,
D.
,
Nokes
,
L.
, and
Frampton
,
R.
,
1991
, “
Detection of Internal Fixation Plate Loosening by Means of an Analysis of Vibratory Responses
,”
J. Biomed. Eng.
,
13
(
4
), pp.
321
327
.
6.
Alshuhri
,
A. A.
,
Holsgrove
,
T. P.
,
Miles
,
A. W.
, and
Cunningham
,
J. L.
,
2015
, “
Development of a Non-Invasive Diagnostic Technique for Acetabular Component Loosening in Total Hip Replacements
,”
Med. Eng. Phys.
,
37
(
8
), pp.
739
745
.
7.
Varini
,
E.
,
Bialoblocka-Juszczyk
,
E.
,
Lannocca
,
M.
,
Cappello
,
A.
, and
Cristofolini
,
L.
,
2010
, “
Assessment of Implant Stability of Cementless Hip Prostheses Through the Frequency Response Function of the Stem–Bone System
,”
Sens. Actuators, A
,
163
(
2
), pp.
526
532
.
8.
Rieger
,
J. S.
,
Jaeger
,
S.
,
Kretzer
,
J. P.
,
Rupp
,
R.
, and
Bitsch
,
R. G.
,
2015
, “
Loosening Detection of the Femoral Component of Hip Prostheses With Extracorporeal Shockwaves: A Pilot Study
,”
Med. Eng. Phys.
,
37
(
2
), pp.
157
164
.
9.
Chiu
,
W.
,
Ong
,
W.
,
Russ
,
M.
, and
Fitzgerald
,
M.
,
2017
, “
Simulated Vibrational Analysis of Internally Fixated Femur to Monitor Healing at Various Fracture Angles
,”
Procedia Eng.
,
188
, pp.
408
414
.
10.
Cornelissen
,
M.
,
Cornelissen
,
P.
,
Van der Perre
,
G.
,
Christensen
,
A.
,
Ammitzboll
,
F.
, and
Dyrbye
,
C.
,
1987
, “
Assessment of Tibial Stiffness by Vibration Testing in Situ—III. Sensitivity of Different Modes and Interpretation of Vibration Measurements
,”
J. Biomech.
,
20
(
4
), pp.
333
342
.
11.
Nakatsuchi
,
Y.
,
Tsuchikane
,
A.
, and
Nomura
,
A.
,
1996
, “
The Vibrational Mode of the Tibia and Assessment of Bone Union in Experimental Fracture Healing Using the Impulse Response Method
,”
Med. Eng. Phys.
,
18
(
7
), pp.
575
583
.
12.
Ong
,
W.
,
Chiu
,
W. K.
,
Russ
,
M. K.
, and
Chiu
,
Z. K.
,
2015
, “Healing Assessment of Fractured Femur: Orthopaedic SHM,”
Structural Health Monitoring 2015: System Reliability for Verification and Implementation
, Vol.
2
,
F.-K
Chang
,
F.
Kopsaftopoulos
, eds.,
DEStech Publications, Inc.
,
Lancaster, PA
, pp.
3139
3146
.
13.
Ong
,
W.
,
Chiu
,
W.
,
Russ
,
M.
, and
Chiu
,
Z.
,
2016
, “
Extending Structural Health Monitoring Concepts for Bone Healing Assessment
,”
Fatigue Fract. Eng. Mater. Struct.
,
39
(
4
), pp.
491
501
.
14.
Ong
,
W.
,
Chiu
,
W.
,
Russ
,
M.
, and
Chiu
,
Z.
,
2016
, “
Integrating Sensing Elements on External Fixators for Healing Assessment of Fractured Femur
,”
Struct. Control Health Monit.
,
23
(
12
), pp.
1388
1404
.
15.
Richardson
,
J.
,
Cunningham
,
J.
,
Goodship
,
A.
,
O’connor
,
B.
, and
Kenwright
,
J.
,
1994
, “
Measuring Stiffness Can Define Healing of Tibial Fractures
,”
Bone Joint J.
,
76
(
3
), pp.
389
394
.
16.
Chehade
,
M. J.
,
Pohl
,
A. P.
,
Pearcy
,
M. J.
, and
Nawana
,
N.
,
1997
, “
Clinical Implications of Stiffness and Strength Changes in Fracture Healing
,”
J. Bone Joint Surg. Br.
,
79
(
1
), pp.
9
12
.
17.
Mora-Macías
,
J.
,
Reina-Romo
,
E.
,
López-Pliego
,
M.
,
Giráldez-Sánchez
,
M.
, and
Domínguez
,
J.
,
2015
, “
In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2663
2674
.
18.
Morshed
,
S.
,
Corrales
,
L.
,
Genant
,
H.
, and
Miclau
,
T.
, III
,
2008
, “
Outcome Assessment in Clinical Trials of Fracture-Healing
,”
J. Bone Joint Surg. Am.
90
(
Supplement 1
), pp.
62
67
.
19.
Benirschke
,
S.
,
Mirels
,
H.
,
Jones
,
D.
, and
Tencer
,
A.
,
1993
, “
The Use of Resonant Frequency Measurements for the Noninvasive Assessment of Mechanical Stiffness of the Healing Tibia
,”
J. Orthop. Trauma
,
7
(
1
), pp.
64
71
.
20.
Claes
,
L. E.
, and
Cunningham
,
J. L.
,
2009
, “
Monitoring the Mechanical Properties of Healing Bone
,”
Clin. Orthop. Relat. Res.
,
467
(
8
), pp.
1964
1971
.
21.
Lowet
,
G.
,
Dayuan
,
X.
, and
Van der Perre
,
G.
,
1996
, “
Study of the Vibrational Behaviour of a Healing Tibia Using Finite Element Modelling
,”
J. Biomech.
,
29
(
8
), pp.
1003
1010
.
22.
Tower
,
S. S.
,
Beals
,
R. K.
, and
Duwelius
,
P. J.
,
1993
, “
Resonant Frequency Analysis of the Tibia as a Measure of Fracture Healing
,”
J. Orthop. Trauma
,
7
(
6
), pp.
552
557
.
23.
Mattei
,
L.
,
Longo
,
A.
,
Di Puccio
,
F.
,
Ciulli
,
E.
, and
Marchetti
,
S.
,
2017
, “
Vibration Testing Procedures for Bone Stiffness Assessment in Fractures Treated With External Fixation
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
1111
1121
.
24.
Sawbones
,
2016
,
Biomechanical test materials.
Vashon, WA
:
A Division of Pacific Research laboratories, Inc
.
25.
Oshkour
,
A.
,
Abu Osman
,
N.
,
Yau
,
Y.
,
Tarlochan
,
F.
,
Pramanik
,
S.
, and
Wan Abas
,
W.
,
2013
, “
Internal–External Circumferential Crack Behaviour in the Cement Layer of Total Hip Replacement
,”
Fatig. Fract. Eng. Mater. Struct.
,
36
(
7
), pp.
586
601
.
26.
Cilingir
,
A.
,
Ucar
,
V.
, and
Kazan
,
R.
,
2007
, “
Three-Dimensional Anatomic Finite Element Modelling of Hemi-Arthroplasty of Human Hip Joint
,”
Trends Biomater. Artif Organs.
,
21
(
1
), pp.
63
72
.
27.
Reimeringer
,
M.
,
Nuño
,
N.
,
Desmarais-Trépanier
,
C.
,
Lavigne
,
M.
, and
Vendittoli
,
P.
,
2013
, “
The Influence of Uncemented Femoral Stem Length and Design on its Primary Stability: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
11
), pp.
1221
1231
.
28.
Elenes
,
E. Y.
,
Roan
,
E.
,
Marinescu
,
R. C.
, and
Janda
,
H. A.
,
2010
, “
Development and Validation of a 2D/3D Finite Element Model of a Composite Hemipelvis
,”
ASME 2010 International Mechanical Engineering Congress and Exposition
,
Vancouver, British Columbia, Canada
,
Nov. 12–18
, pp.
401
409
.
29.
Iesaka
,
K.
,
Kummer
,
F. J.
, and
Di Cesare
,
P. E.
,
2005
, “
Stress Risers Between Two Ipsilateral Intramedullary Stems: A Finite-Element and Biomechanical Analysis
,”
J. Arthroplasty
,
20
(
3
), pp.
386
391
.
You do not currently have access to this content.