Abstract

The influence of radial neutron reflector on the build-up and propagation of a nuclear fuel burn-up wave in a fast multiplying medium is investigated using a consistent parametric approach. Coupled multigroup neutron diffusion equations with a burn-up evolution model are simulated on the two-dimensional cylindrical reactor geometry with azimuthal symmetry. Uranium–plutonium transmutation model is considered, and the simulation is performed by using the finite element multiphysics software package comsol. Transient characteristics of the burn-up wave are represented by two new parameters, namely, transient time (TT) and transient length (TL). TT and TL are defined as the time and distance required for the burn-up wave to attain its steady-state nature. Steady-state phases are characterized in terms of wave velocity, full width half maximum (FWHM), and full width 10% of maximum (FW10M). A sensitivity study of steady-state and transient parameters is conducted for the different values of radial reflector thickness. The potential relevance of these characterization parameters on the development of optimal geometrical configuration of radial neutron reflector in breed and burn (B&B)-based reactor design is addressed based on the sensitivity study.

References

1.
Feinberg
,
S.
,
1958
, “
Discussion Content in: Record of Proceedings Session B-10
,”
Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, United Nations
,
Geneva, Switzerland
, Sept. 1–13, p.
447
.
2.
Feoktistov
,
L. P.
,
1988
,
Analysis of a Concept of Reactor Physical Safety
,
Kurchatov Institute for Atomic Energy
,
Moscow, Russia
.
3.
Feoktistov
,
L. P.
,
1989
, “
Neutron-Induced Fission Wave
,”
Sov. Phys. Dokl.
,
34
, p.
1071
.
4.
Feoktistov
,
L. P.
,
1993
, “
Safety: The Key to Revitalization of Nuclear Power
,”
Phys.-Usp.
,
36
(
8
), pp.
733
743
.10.1070/PU1993v036n08ABEH002301
5.
Teller
,
E.
,
Ishikawa
,
M.
,
Wood
,
L.
,
Hyde
,
R.
, and
Nuckolls
,
J.
,
1996
, “
Completely Automated Nuclear Reactors for Long-Term Operation II: Toward a Concept-Level Point-Design of a High-Temperature, Gas-Cooled Central Power Station System, Part II
,”
Proceedings of the International Conference on Emerging Nuclear Energy Systems, ICENES
, Obninsk, Russia, June 1, pp.
123
127
.
6.
Teller
,
E.
,
Ishikawa
,
M.
,
Wood
,
L.
,
Hyde
,
R.
, and
Nuckolls
,
J.
,
2003
, “
Completely Automated Nuclear Power Reactors for Long-Term Operation: III. Enabling Technology for Large-Scale, Low-Risk, Affordable Nuclear Electricity
,”
University of California Lawrence Livermore National Laboratory Publication
, Report No. UCRL-JRNL-122708.
7.
Seifritz
,
W.
,
1995
, “
Non-Linear Burn-Up Waves in Opaque Neutron Absorbers/Nichtlineare Abbrandwellen in Optisch Dicken Neutronenabsorbern
,”
Kerntechnik
,
60
(
4
), pp.
185
188
.10.1515/kern-1995-600415
8.
Seifritz
,
W.
,
1998
, “
The Thermal Neutronic Soliton Wave Phenomenon in an Infinite Medium
,”
Kerntechnik
,
63
(
5–6
), pp.
261
266
.10.1515/kern-1998-635-610
9.
Van Dam
,
H.
,
1998
, “
Burnup Waves
,”
Ann. Nucl. Energy
,
25
(
17
), pp.
1409
1417
.10.1016/S0306-4549(98)00046-2
10.
Van Dam
,
H.
,
2000
, “
Self-Stabilizing Criticality Waves
,”
Ann. Nucl. Energy
,
27
(
16
), pp.
1505
1521
.10.1016/S0306-4549(00)00035-9
11.
Van Dam
,
H.
,
2003
, “
Flux distributions in stable criticality waves
,”
Ann. Nucl. Energy
, 30(
15
), pp.
1495
1504
.10.1016/S0306-4549(03)00098-7
12.
Sekimoto
,
H.
,
Ryu
,
K.
, and
Yoshimura
,
Y.
,
2001
, “
CANDLE: The New Burnup Strategy
,”
Nucl. Sci. Eng.
,
139
(
3
), pp.
306
317
.10.13182/NSE01-01
13.
Sekimoto
,
H.
, and
Tanaka
,
K.
,
2002
, “
CANDLE Burnup for Different Cores
,”
Proceedings of PHYSOR
, Seoul, Korea, Oct. 7–10, p.
122
.
14.
Sekimoto
,
H.
,
2005
,
A Light of CANDLE: New Burnup Strategy
,
Institute of Technology
,
Tokyo
.
15.
Gol'din
,
V. Y.
, and
Anistratov
,
D. Y.
,
1995
, “
Fast Neutron Reactor in a Self-Adjusting Neutron-Nuclide Regime
,”
Mat. Model.
,
7
(
10
), pp.
12
32
.
16.
Goldin
,
V. Y.
,
Sosnin
,
N. V.
, and
Troshchiev
,
Y. V.
,
1998
, “
Fast Neutron Reactor in a Self-Controlled Regime of 2D Type
,”
Dokl. Ros. Acad. Nauk.
,
358
, pp.
747
748
.
17.
Fomin
,
S.
,
Mel'nik
,
Y.
,
Pilipenko
,
V.
, and
Shul'ga
,
N.
,
2005
, “
Investigation of Self-Organization of the Non-Linear Nuclear Burning Regime in Fast Neutron Reactors
,”
Ann. Nucl. Energy
,
32
(
13
), pp.
1435
1456
.10.1016/j.anucene.2005.04.001
18.
Fomin
,
S. P.
,
Mel'nik
,
Y. P.
,
Pilipenko
,
V. V.
, and
Shul'ga
,
N. F.
,
2008
, “
Initiation and Propagation of Nuclear Burning Wave in Fast Reactor
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
163
169
.10.1016/j.pnucene.2007.10.020
19.
Fomin
,
S. P.
,
Fomin
,
A. S.
,
Melnik
,
Y. P.
,
Pilipenko
,
V. V.
, and
Shul'ga
,
N. F.
,
2009
, “
Safe Fast Reactor Based on the Self-Sustained Regime of Nuclear Burning Wave
,”
Proceedings of IC “Global 2009
, Paris, France, Sept. 6–11, Paper No. 9456.
20.
Fomin
,
S. P.
,
Fomin
,
O. S.
,
Mel'nik
,
Y. P.
,
Pilipenko
,
V. V.
, and
Shul'ga
,
N. F.
,
2011
, “
Nuclear Burning Wave in Fast Reactor With Mixed Th-U Fuel
,”
Prog. Nucl. Energy
,
53
(
7
), pp.
800
805
.10.1016/j.pnucene.2011.05.004
21.
Chen
,
X. N.
,
Kiefhaber
,
E.
, and
Maschek
,
W.
,
2005
, “
Neutronic Model and Its Solitary Wave Solutions for a CANDLE Reactor
,”
Proceedings of ICENES
, Brussels, Belgium, Aug. 21–26, pp.
742
751
.
22.
Chen
,
X. N.
,
Maschek
,
W.
,
Rineiski
,
A.
, and
Kiefhaber
,
E.
,
2007
, “
Solitary Burn-Up Wave Solution in a Multi-Group Diffusion-Burnup Coupled System
,”
Proceedings of ICENES
,
Istanbul, Turkey
, June 3–8, Vol.
7
, pp.
73
74
.
23.
Chen
,
X. N.
,
Kiefhaber
,
E.
,
Zhang
,
D.
, and
Maschek
,
W.
,
2012
, “
Fundamental Solution of Nuclear Solitary Wave
,”
Energy Convers. Manage.
,
59
, pp.
40
49
.10.1016/j.enconman.2012.02.005
24.
Chen
,
X. N.
,
Gabrielli
,
F.
,
Rineiski
,
A.
, and
Schulenberg
,
T.
,
2019
, “
Boiling Water Cooled Travelling Wave Reactor
,”
Ann. Nucl. Energy
,
134
, pp.
342
349
.10.1016/j.anucene.2019.06.037
25.
Ohoka
,
Y.
,
Watanabe
,
T.
, and
Sekimoto
,
H.
,
2005
, “
Simulation Study on CANDLE Burnup Applied to Block-Type High Temperature Gas Cooled Reactor
,”
Prog. Nucl. Energy
,
47
(
1–4
), pp.
292
299
.10.1016/j.pnucene.2005.05.028
26.
Takaki
,
N.
, and
Sekimoto
,
H.
,
2008
, “
Potential of CANDLE Reactor on Sustainable Development and Strengthened Proliferation Resistance
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
114
118
.10.1016/j.pnucene.2007.10.011
27.
Rusov
,
V. D.
,
Linnik
,
E. P.
,
Tarasov
,
V. A.
,
Zelentsova
,
T. N.
,
Sharph
,
I. V.
,
Vaschenko
,
V. N.
,
Kosenko
,
S. I.
, et al.,
2011
, “
Traveling Wave Reactor and Condition of Existence of Nuclear Burning Soliton-Like Wave in Neutron-Multiplying Media
,”
Energies
,
4
(
9
), pp.
1337
1361
.10.3390/en4091337
28.
Rusov
,
V. D.
,
Tarasov
,
V. A.
,
Eingorn
,
M. V.
,
Chernezhenko
,
S. A.
,
Kakaev
,
A. A.
,
Vashchenko
,
V. M.
, and
Beglaryan
,
M. E.
,
2015
, “
Ultraslow Wave Nuclear Burning of Uranium–Plutonium Fissile Medium on Epithermal Neutrons
,”
Prog. Nucl. Energy
,
83
, pp.
105
122
.10.1016/j.pnucene.2015.03.007
29.
Rusov
,
V. D.
,
Tarasov
,
V. A.
,
Sharph
,
I. V.
,
Vashchenko
,
V. N.
,
Linnik
,
E. P.
,
Zelentsova
,
T. N.
,
Beglaryan
,
M. E.
,
Chernegenko
,
S. A.
,
Kosenko
,
S. I.
, and
Smolyar
,
V. P.
,
2015
, “
On Some Fundamental Peculiarities of the Traveling Wave Reactor
,”
Sci. Technol. Nucl. Install.
,
2015
(
1
), pp.
1
23
.10.1155/2015/703069
30.
Pilipenko
,
V.
,
Belozorov
,
D.
,
Davydov
,
L.
, and
Shulga
,
N.
,
2003
, “
Some Aspects of Slow Nuclear Burning
,”
2003 International Congress on Advances in Nuclear Power Plants-Proceedings of ICAPP 2003
,
Cordoba, Spain
, May 4–7, p.
3169
.
31.
Anoop
,
K. V.
,
Baraik
,
K.
, and
Om
,
P. S.
,
2015
, “
Build-Up of Burnup Waves in Neutron Absorbing and Diffusive Media
,”
Sci. Publ. State Univ. Novi Pazar Ser. A
,
7
(
1
), pp.
47
60
.10.5937/SPSUNP1501047A
32.
Anoop
,
K. V.
, and
Singh
,
O. P.
,
2018
, “
The Build-Up and Characterization of Nuclear Burn-Up Wave in a Fast Neutron Multiplying Medium
,”
Sādhanā
,
43
(
1
), pp.
1
10
.10.1007/s12046-017-0772-z
33.
Kumar
,
M.
, and
Singh
,
O. P.
,
2019
, “
A Study of Transverse Buckling Effect on the Characteristics of Nuclides Burnup Wave in a Fast Neutron Multiplying Media
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
5
(
4
), p.
041401
.10.1115/1.4043294
34.
Ray
,
D.
,
Kumar
,
M.
,
Bhadouria
,
V. S.
,
Saraswat
,
S. P.
, and
Munshi
,
P.
,
2020
, “
A Study of Transverse Buckling Effect on the Characteristics of Burnup Wave in a Diffusive Media
,”
International Youth Nuclear Congress
,
Sydney, Australia
, Mar. 8–13, pp.
84
87
.
35.
Ray
,
D.
,
Saraswat
,
S. P.
,
Kumar
,
M.
,
Singh
,
O. P.
, and
Munshi
,
P.
,
2022
, “
Build Up and Characterization of Ultraslow Nuclear Burn-Up Wave in Epithermal Neutron Multiplying Medium
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
2
), p.
021501
.10.1115/1.4049727
36.
Ray
,
D.
,
Kumar
,
M.
,
Singh
,
O. P.
, and
Munshi
,
P.
,
2022
, “
A Study of Nuclear Fuel Burnup Wave Development in a Fast Neutron Energy Spectrum Multiplying Medium: Improved Model and Consistent Parametric Approach for Evaluation
,”
Nucl. Sci. Eng.
,
196
(
4
), pp.
478
496
.10.1080/00295639.2021.1987134
37.
Ahlfeld
,
C.
,
Gilleland
,
J.
,
Weaver
,
K. D.
,
Whitmer
,
C.
, and
Zimmerman
,
G.
,
2010
, “
A Once-Through Fuel Cycle for Fast Reactors
,”
ASME J. Eng. Gas Turbines Power
,
132
(
10
), p.
102917
.10.1115/1.4000898
38.
TerraPower
,
L. L. C.
,
2010
, “
Traveling-Wave Reactors: A Truly Sustainable and Full-Scale Resource for Global Energy Needs
,”
Proceedings of ICAPP
, San Diego, CA, June 13–17, pp.
546
558
.
39.
Ahlfed
,
C.
,
Burke
,
T.
,
Ellis
,
T.
,
Hejzlar
,
P.
,
Weaver
,
K. D.
,
Whitmer
,
C.
,
Gilleland
,
J.
, et al.,
2011
, “
Conceptual Design of a 500 MWe Travelling Wave Demonstration Reactor Plant
,”
Icapp
, Nice, France, May 2–5, p.
11199
.
40.
Zheng
,
M.
,
Tian
,
W.
,
Chu
,
X.
,
Zhang
,
D.
,
Wu
,
Y.
,
Qiu
,
S.
, and
Su
,
G.
,
2014
, “
Study of Traveling Wave Reactor (TWR) and CANDLE Strategy: A Review Work
,”
Prog. Nucl. Energy
,
71
, pp.
195
205
.10.1016/j.pnucene.2013.12.010
41.
Lopez‐Solis
,
R.
, and
François
,
J. L.
,
2018
, “
The Breed and Burn Nuclear Reactor: A Chronological, Conceptual, and Technological Review
,”
Int. J. Energy Res.
,
42
(
3
), pp.
953
965
.10.1002/er.3854
42.
Cuoc
,
E.
,
Shwageraus
,
E.
,
Kasam
,
A.
, and
Scott
,
I.
,
2021
, “
Core Design of Breed & Burn Molten Salt Fast Reactor
,”
EPJ Web Conf.
,
247
, p.
01004
.10.1051/epjconf/202124701004
43.
Ma
,
K.
, and
Hu
,
P.
,
2023
, “
Preliminary Neutronics and Thermal Analysis of a Heat Pipe Cooled Traveling Wave Reactor
,”
Ann. Nucl. Energy
,
190
, p.
109876
.10.1016/j.anucene.2023.109876
44.
Sambuu
,
O.
,
Hoang
,
V. K.
,
Nishiyama
,
J.
, and
Obara
,
T.
,
2023
, “
Feasibility of Breed-and-Burn Reactor Core Design With Nitride Fuel and Lead Coolant
,”
Ann. Nucl. Energy
,
182
, p.
109583
.10.1016/j.anucene.2022.109583
45.
Sambuu
,
O.
,
Hoang
,
V. K.
,
Nishiyama
,
J.
, and
Obara
,
T.
,
2022
, “
Neutron Balance Features in Breed-and-Burn Fast Reactors
,”
Nucl. Sci. Eng.
,
196
(
3
), pp.
322
341
.10.1080/00295639.2021.1980361
46.
Hoang
,
V. K.
,
Sambuu
,
O.
,
Nishiyama
,
J.
, and
Obara
,
T.
,
2022
, “
Feasibility of Sodium-Cooled Breed-and-Burn Reactor With Rotational Fuel Shuffling
,”
Nucl. Sci. Eng.
,
196
(
1
), pp.
109
120
.10.1080/00295639.2021.1951063
47.
Waltar
,
A. E.
, and
Reynolds
,
A. B.
,
1981
,
Fast Breeder Reactors
,
Pergamon Press
,
New York
.
48.
Waltar
,
A. E.
,
Todd
,
D. R.
, and
Tsvetkov
,
P. V.
, eds.,
2011
,
Fast Spectrum Reactors
,
Springer Science & Business Media
,
New York
.
49.
Wirtz
,
K.
,
1978
,
Lectures on Fast Reactors
,
American Nuclear Society
,
La Grange Park, IL
.
50.
Fayez Moustafa
,
Moawad
,
R.
,
2016
, “
Approximation of the Neutron Diffusion Equation on Hexagonal Geometries Using a hp Finite Element Method
,”
Doctoral dissertation
,
Universitat Politècnica de València, Valencia, Spain
.https://m.riunet.upv.es/bitstream/handle/10251/65353/-FAYEZ%20-%20Approximation%20of%20The%20Neutron%20Diffusion%20Equation%20on%20Hexagonal%20Geometries%20Using%20%20a%20h-p%20fini....pdf?sequence=1&isAllowed=y
51.
Fomin
,
S. P.
,
Kirdin
,
A. I.
,
Malovytsia
,
M. S.
,
Pilipenko
,
V. V.
, and
Shul'ga
,
N. F.
,
2020
, “
Influence of the Radial Neutron Reflector Efficiency on the Power of Fast Nuclear-Burning-Wave Reactor
,”
Ann. Nucl. Energy
,
148
, p.
107699
.10.1016/j.anucene.2020.107699
52.
Fomin
,
A.
,
Fomin
,
S.
,
Mel'nik
,
Y.
,
Pilipenko
,
V. V.
, and
Shul'ga
,
N.
,
2013
, “
Nuclear Burning Wave Reactor: Smooth Start-Up Problem
,”
East Eur. J. Phys.
,
1041
(
2
), pp.
49
56
.https://periodicals.karazin.ua/eejp/article/view/13512
53.
Bondarenko
,
I. I.
, and
Abagyan
,
L. P.
,
1964
, “
Group Constants for Nuclear Reactor Calculations
,”
Consultants Bureau
,
New York
.
You do not currently have access to this content.