Abstract

Accident analysis and ensuring power plant safety are pivotal in the nuclear energy sector. Significant strides have been achieved over the past few decades regarding fire protection and safety, primarily centered on design and regulatory compliance. Yet, after the Fukushima accident a decade ago, the imperative to enhance measures against fire, internal flooding, and power loss has intensified. Hence, a comprehensive, multilayered protection strategy against severe accidents is needed. Consequently, gaining a deeper insight into pool fires and their behavior through extensive validated data can greatly aid in improving these measures using advanced validation techniques. A model validation study was performed at Sandia National Laboratories (SNL) in which a 30-cm diameter methanol pool fire was modeled using the SIERRA/Fuego turbulent reacting flow code. This validation study used a standard validation experiment to compare model results against, and conclusions have been published. The fire was modeled with a large eddy simulation (LES) turbulence model with subgrid turbulent kinetic energy closure. Combustion was modeled using a strained laminar flamelet library approach. Radiative heat transfer was accounted for with a model utilizing the gray-gas approximation. In this study, additional validation analysis is performed using the area validation metric (AVM). These activities are done on multiple datasets involving different variables and temporal/spatial ranges and intervals. The results provide insight into the use of the area validation metric on such temporally varying datasets and the importance of physics-aware use of the metric for proper analysis.

References

1.
Zohuri
,
B.
, and
Fathi
,
N.
,
2017
,
Thermal-Hydraulic Analysis of Nuclear Reactors
,
Springer International Publishing
,
New York
.
2.
Mowrer
,
D. S.
,
1998
, “
Overview of IAEA Guidelines for Fire Safety Inspection and Operation in Nuclear Power Plants
,”
IAEA
,
Vienna, Austria
.
3.
Aro
,
C.
,
Black
,
A.
,
Brown
,
A.
,
Burns
,
S.
,
Cochran
,
B.
,
Domino
,
S.
,
Evans
,
G.
, et al.,
2021
, “
SIERRA Low Mach Module: Fuego Theory Manual—Version 5.0
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2021-3929.
4.
Agelastos
,
A. M.
, and
Lin
,
P. T.
,
2013
, “
Simulation Information Regarding Sandia National Laboratories Trinity Capability Improvement Metric
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2013-8748.https://www.osti.gov/servlets/purl/1104749#:~:text=Sandia%20National%20Laboratories%20(SNL)%20selected,Capability%20Improvement%20Metric%20(CIM)%20since
5.
Edwards
,
H. C.
,
Wiliams
,
A. B.
,
Sjaardema
,
G. D.
,
Baur
,
D. G.
, and
Cochran
,
W. K.
,
2010
, “
Sierra Toolkit Computational Mesh Computational Model
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2010-1192.https://www.osti.gov/servlets/purl/976950
6.
The Trilinos Project Team
,
2020
, “
The Trilinos Project
,”
Trilinos Project
,
Albuquerque, NM
, accessed Apr. 5, 2022, https://trilinos.github.io
7.
IAFSS
, 2024, “
Measurement and Computation of Fire Phenomena (MaCFP Working Group)
,” accessed Apr. 15, 2024, https://iafss.org/macfp/
8.
Drysdale
,
D.
,
1999
,
An Introduction to Fire Dynamics
,
Wiley
,
Chichester, UK
.10.1002/9781119975465
9.
Weckman
,
E. J.
, and
Strong
,
A. B.
,
1996
, “
Experimental Investigation of the Turbulence Structure of Medium-Scale Methanol Pool Fires
,”
Combust. Flame
,
105
(
3
), pp.
245
266
.10.1016/0010-2180(95)00103-4
10.
Falkesntein-Smith
,
R.
,
Sung
,
K.
,
Chen
,
J.
,
Harris
,
K.
, and
Hamins
,
A.
,
2020
, “
The Structure of Medium-Scale Pool Fires
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, Technical Note No. 2082.
11.
Hamins
,
A.
, and
Lock
,
A.
,
2016
, “
The Structure of a Moderate-Scale Methanol Pool Fire
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, Report No.
NIST.TN.1928
.https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.1928.pdf
12.
Klassen
,
M.
, and
Gore
,
J. P.
,
1992
, “
Structure and Radiation Properties of Pool Fires
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, Report No.
NIST-GCR-94-651
.https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB94193802.xhtml
13.
Falkenstein-Smith
,
R.
,
Sung
,
K.
,
Chen
,
J.
, and
Hamins
,
A.
,
2021
, “
Chemical Structure of Medium-Scale Liquid Pool Fires
,”
Fire Saf. J.
,
120
, p.
103099
.10.1016/j.firesaf.2020.103099
14.
Kim
,
S. C.
,
Lee
,
K. Y.
, and
Hamins
,
A.
,
2019
, “
Energy Balance in Medium-Scale Methanol, Ethanol, and Acetone Pool Fires
,”
Fire Saf. J.
,
107
, pp.
44
53
.10.1016/j.firesaf.2019.01.004
15.
Ahmed
,
M.
, and
Trouve
,
A.
,
2021
, “
Large Eddy Simulation of the Unstable Flame Structure and Gas-to-Liquid Thermal Feedback in a Medium-Scale Methanol Pool Fire
,”
Combust. Flame
,
225
, pp.
237
254
.10.1016/j.combustflame.2020.10.055
16.
Hubbard
,
J. A.
,
Hansen
,
M. A.
,
Kirsch
,
J. R.
,
Hewson
,
J. C.
, and
Domino
,
S. P.
,
2022
, “
Medium-Scale Methanol Pool Fire Model Validation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
6
), p.
061303
.10.1115/1.4054204
17.
Ma
,
L.
,
Nmira
,
F.
, and
Consalvi
,
J. L.
,
2020
, “
Large Eddy Simulation of Medium-Scale Methanol Pool Fires-Effects of Pool Boundary Conditions
,”
Combust. Flame
,
222
, pp.
336
354
.10.1016/j.combustflame.2020.09.007
18.
Orloff
,
L.
, and
De Ris
,
J.
,
1982
, “
Froude Modeling of Pool Fires
,”
Symp. (Int.) Combust.
,
19
(
1)
, pp.
885
895
.10.1016/S0082-0784(82)80264-6
19.
Raj
,
V. C.
, and
Prabhu
,
S. V.
,
2018
, “
Measurement of Geometric and Radiative Properties of Heptane Pool Fires
,”
Fire Saf. J.
,
96
, pp.
13
26
.10.1016/j.firesaf.2017.12.003
20.
Ahmadi
,
O.
,
Mortazavi
,
S. B.
,
Pasdarshahri
,
H.
, and
Mohabadi
,
H. A.
,
2019
, “
Consequence Analysis of Large-Scale Pool Fire in Oil Storage Terminal Based on Computational Fluid Dynamic (CFD)
,”
Process Saf. Environ. Prot.
,
123
, pp.
379
389
.10.1016/j.psep.2019.01.006
21.
Biello
,
D.
,
2011
, “
Anatomy of a Nuclear Crisis: A Chronology of Fukushima
,” YaleEnvironment360, New Haven, CT, accessed Apr. 15, 2024, https://e360.yale.edu/features/anatomy_of_a_nuclear_crisis_a_chronology_of_fukushima
22.
McGrattan
,
K. B.
,
2007
, “
Evaluation of Fire Models for Nuclear Power Plant Applications: Benchmark Exercise #3
,”
NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology
,
Gaithersburg, MD
, Report No. NISTIR 7338.https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7338.pdf
23.
Kein-Hebling
,
W.
,
Roewekamp
,
M.
, and
Riese
,
O.
,
2006
, “
Evaluation of Fire Models for Nuclear Power Plant Applications: Benchmark Exercise #4: Fuel Pool Fire Inside a Compartment
,”
Gesellschaft für Anlagenund Reaktorsicherheit (GRS) GmbH
,
Brussels, Belgium
, GRS Report No. GRS-213.https://www.grs.de/sites/default/files/publications/GRS-213.pdf
24.
Nowlen
,
S. P.
,
1989
, “
A Summary of Nuclear Power Plant Fire Safety Research at Sandia National Laboratories, 1975–1987
,”
U.S. Nuclear Regulatory Commission (NRC)
,
Washington, DC
, Report No.
NUREG/CR-5384
.https://www.osti.gov/servlets/purl/5227320#:~:text=Among%20the%20topics%20investigated%20by,of%20cable%20penetration%20seals%2C%20transient
25.
von Hippel
,
F. N.
, and
Schoeppner
,
M.
,
2016
, “
Reducing the Danger From Fires in Spent Fuel Pools
,”
Sci. Global Secur.
,
24
(
3
), pp.
141
173
.10.1080/08929882.2016.1235382
26.
Rechard
,
R. P.
,
Hadgu
,
T.
,
Wang
,
Y.
,
Sanchez
,
L. C.
,
McDaniel
,
P.
,
Skinner
,
C.
, and
Fathi
,
N.
,
2017
, “
Technical Feasibility of Direct Disposal of Electrorefiner Salt Waste
,”
Sandia National Laboratories
(SNL-NM), Albuquerque, NM, Report No. SAND-2017-10554.10.2172/1527323
27.
Cooper
,
L. Y.
, and
Steckler
,
K. D.
,
1996
, “
Methodology for Developing and Implementing Alternative Temperature-Time Curves for Testing the Fire Resistance of Barriers for Nuclear Power Plant Applications
,” Division of Systems Safety and Analysis Office of Nuclear Reactor Regulation, US. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG–1547.https://www.nrc.gov/docs/ML0705/ML070530536.pdf
28.
Zhu
,
Y.
,
2022
, “
Nuclear Power Plant Fire Safety Risk Management Method and Application
,” ASME Paper No. ICONE29-93533.10.1115/ICONE29-93533
29.
Irick
,
K.
, and
Fathi
,
N.
,
2019
, “
Computational Evaluation of Thermal Barrier Coatings: Two-Phase Thermal Transport Analysis
,” ASME Paper No. VVS2019-5134.10.1115/VVS2019-5134
30.
Rechard
,
R. P.
,
Hadgu
,
T.
,
Wang
,
Y.
,
Sanchez
,
L. C.
,
McDaniel
,
P.
,
Skinner
,
C.
,
Fathi
,
N.
,
Frank
,
S.
, and
Patterson
,
M.
,
2017
, “
Feasibility of Direct Disposal of Salt Waste From Electochemical Processing of Spent Nuclear Fuel
,” e-print arXiv:1710.00855.https://www.osti.gov/servlets/purl/1431544
31.
Joulain
,
P.
,
1998
, “
The Behavior of Pool Fires: State of the Art and New Insights
,”
Symp. (Int.) Combust.
,
27
(
2)
, pp.
2691
2706
.10.1016/S0082-0784(98)80125-2
32.
Wu
,
B.
,
Roy
,
S. P.
, and
Zhao
,
X.
,
2020
, “
Detailed Modeling of a Small-Scale Turbulent Pool Fire
,”
Combust. Flame
,
214
, pp.
224
237
.10.1016/j.combustflame.2019.12.034
33.
Merci
,
B.
,
2016
, “
Introduction to Fluid Mechanics
,”
SFPE Handbook of Fire Protection Engineering
, 5th ed.,
Springer
,
New York
.
34.
McCaffrey
,
B. J.
,
1979
, “
Purely Buoyant Diffusion Flames. Some Experimental Results
,” Center for Fire Research, National Bureau of Standards, Washington, DC, Report No. NBSIR 79–1910.https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir79-1910.pdf
35.
Bouhafid
,
A.
,
Vantelon
,
J. P.
,
Joulain
,
P.
, and
Fernandez-Pello
,
A. C.
,
1988
, “
On the Flame Structure at the Base of a Pool Fire
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
1291
1298
.10.1016/S0082-0784(89)80140-7
36.
Iqbal
,
N.
, and
Salley
,
M. H.
,
2004
, “
Fire Dynamics Tools (FDT): Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program
,” U.S. Nuclear Regulatory Commission,
Washington, DC
, Report No. NUREG-1805.
37.
Heskestad
,
G.
,
2016
, “
Fire Plumes, Flame Height, and Air Entrainment
,”
SFPE Handbook of Fire Protection Engineering
,
Springer
,
Berlin
, pp.
396
428
.
38.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
39.
National Research Council
,
1930
, “
Current Capabilities and Future Directions in Computational Fluid Dynamics
,” Report No. NASA-CR-179946.
40.
ASME
,
2009
, “
V&V 20-2009: Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers, New York, Report No. PTC-61.https://www.asme.org/codes-standards/find-codesstandards/v-v-20-standard-verification-validation-computational-fluid-dynamics-heattransfer
41.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.10.1016/j.cma.2007.07.030
42.
Roy
,
C. J.
, and
Voyles
,
I.
,
2013
, “
Assessment of Model Validation Approaches Using the Method of Manufactured Universes
,”
ASME Verification and Validation Symposium
, Las Vegas, NV, May 22–24.
43.
Shen
,
Y. L.
, and
Fathi
,
N.
,
2021
, “
Numerical Study of Elastic-Plastic Behavior of Pore-Containing Materials: Effects of Pore Arrangement
,”
Int. J. Theor. Appl. Multiscale Mech.
,
3
(
4
), pp.
262
286
.10.1504/IJTAMM.2021.120795
44.
Fathi
,
N.
,
Aleyasin
,
S. S.
,
Wayne
,
P.
, and
Vorobieff
,
P.
,
2017
, “
Computational Assessment of Double-Inlet Collector in Solar Chimney Power Plant Systems
,”
ASME
Paper No. FEDSM2017-69424.10.1115/FEDSM2017-69424
45.
Aleyasin
,
S. S.
,
Fathi
,
N.
,
Tachie
,
M. F.
,
Vorobieff
,
P.
, and
Koupriyanov
,
M.
,
2017
, “
Experimental-Numerical Analysis of Turbulent Incompressible Isothermal Jets
,”
ASME
Paper No. FEDSM2017-69418.10.1115/FEDSM2017-69418
46.
Rodriguez
,
S. B.
, and
Fathi
,
N.
,
2017
, “
Applied Computational Fluid Dynamics and Turbulence Modeling
,”
Sandia National Laboratories (SNL-NM)
,
Albuquerque, NM, Report
No. SAND2017-13577B.
47.
Hamins
,
A.
,
Fischer
,
S. J.
,
Kashiwagi
,
T.
,
Klassen
,
M. E.
, and
Gore
,
J. P.
,
1994
, “
Heat Feedback to the Fuel Surface in Pool Fires
,”
Combust. Sci. Technol.
,
97
(
1–3
), pp.
37
62
.10.1080/00102209408935367
You do not currently have access to this content.