Abstract

Several nuclear shielding parameters were evaluated for surgical stainless steel grades 304, 304 L, 316, and 316 L. The effective atomic number Zeff, mean free path (MFP), effective electron density Neff, half-value layer (HVL), and effective conductivity (Ceff) of the investigated alloys were evaluated via the mass attenuation coefficient (μ/ρ). The mass attenuation (μ/ρ) coefficients were computed for gamma-ray photons in the energy range from 15 keV to 15 MeV using Phy-X/PSD program. Fast neutron attenuation was analyzed by computing the removal cross section (ΣR, cm−1) using partial density method. The obtained results by Phy-X/PSD program were validated using NIST XCOM and Monte Carlo (MCNP4C) code. The stopping power of these alloys against electron/proton/α-particles was evaluated using the ESTAR and SRIM Monte Carlo code, considering total stopping power and projected range. Furthermore, the transmitted neutron fraction at different neutron energies was calculated using Neutron Calculatro-V2 code. These calculations were performed for thermal neutrons (25.4 eV) and fast neutrons (with energies of 4 and 4.5 MeV). The obtained results showed that 316 L alloy possesses good protection performance against gamma photons, charged particles, fast and thermal neutrons compared with other investigated alloys. Comparison of the calculated values revealed good agreement between Phy-X/PSD, NIST XCOM, and MCNP4C. This work should be informative for the potential uses of these materials in the nuclear industry to build effective radiation shielding.

References

1.
Benfu
,
H.
,
Kinoshita
,
H.
,
Shibayama
,
T.
, and
Takahashi
,
H.
,
2002
, “
Effect of Helium on Radiation Behavior in Low Activation Fe-Cr-Mn Alloys
,”
Mater. Trans.
,
43
, pp.
622
626
.10.2320/matertrans.43.622
2.
Sadawy
,
M. M.
, and
Elsharkawy
,
E. R.
,
2013
, “
Prediction and Modeling of Corrosion in Steel Oil Storage Tank From Nondestructive Inspection
,”
J. Mater. Sci. Eng. B
,
3
(
12
), pp.
785
792
.10.17265/2161-6221/2013.12.006
3.
Büyükyıldız
,
M.
,
Kurudirek
,
M.
,
Ekici
,
M.
,
İçelli
,
O.
, and
Karabul
,
Y.
,
2017
, “
Determination of Radiation Shielding Parameters of 304 L Stainless Steel Specimens From Welding Area for Photons of Various Gamma Ray Sources
,”
Prog. Nucl. Energy
,
100
, pp.
245
254
.10.1016/j.pnucene.2017.06.014
4.
Singh
,
V. P.
,
Medhat
,
M. E.
, and
Badiger
,
N. M.
,
2014
, “
Gamma-Ray Shielding Effectiveness of Some Alloys for Fusion Reactor Design
,”
J. Fusion Energy
,
33
(
5
), pp.
555
564
.10.1007/s10894-014-9704-7
5.
Dehghan-Manshadi
,
A.
,
Yu
,
P.
,
Dargusch
,
M.
,
StJohn
,
D.
, and
Qian
,
M.
,
2020
, “
Metal Injection Moulding of Surgical Tools, Biomaterials and Medical Devices: A Review
,”
Powder Technol.
,
364
, pp.
189
204
.10.1016/j.powtec.2020.01.073
6.
Khalili
,
E.
, and
Saraf Bidabad
,
M.
,
2017
, “
Combination of Laser Patterning and Nano PTFE Sputtering for the Creation a Super-Hydrophobic Surface on 304 Stainless Steel in Medical Applications
,”
Surf. Interfaces
,
8
, pp.
219
224
.10.1016/j.surfin.2017.06.008
7.
Singh
,
R.
,
Singh
,
S.
,
Singh
,
G.
, and
Thind
,
K. S.
,
2017
, “
Gamma Radiation Shielding Properties of Steel and Iron Slags
,”
New J. Glass Ceram.
,
07
(
1
), pp.
1
11
.10.4236/njgc.2017.71001
8.
Singh
,
V. P.
,
Medhat
,
M. E.
, and
Shirmardi
,
S. P.
,
2015
, “
Comparative Studies on Shielding Properties of Some Steel Alloys Using Geant4, MCNP, WinXCOM and Experimental Results
,”
Radiat. Phys. Chem.
,
106
, pp.
255
260
.10.1016/j.radphyschem.2014.07.002
9.
Aygün
,
B.
,
Şakar
,
E.
,
Korkut
,
T.
,
Sayyed
,
M. I.
,
Karabulut
,
A.
, and
Zaid
,
M. H. M.
,
2019
, “
Fabrication of Ni, Cr, W Reinforced New High Alloyed Stainless Steels for Radiation Shielding Applications
,”
Results Phys.
,
12
, pp.
1
6
.10.1016/j.rinp.2018.11.038
10.
Aygün
,
B.
,
2020
, “
High Alloyed New Stainless Steel Shielding Material for Gamma and Fast Neutron Radiation
,”
Nucl. Eng. Technol.
,
52
(
3
), pp.
647
653
.10.1016/j.net.2019.08.017
11.
Singh
,
V.
, and
Badiger
,
N.
,
2013
, “
Study of Mass Attenuation Coefficients, Effective Atomic Numbers and Electron Densities of Carbon Steel and Stainless Steels
,”
Radioprotection
,
48
(
3
), pp.
431
443
.10.1051/radiopro/2013067
12.
Steels
,
A.
,
2013
, “
Stainless Steel Grade Datasheets
,”
Atlas Steels Technical Department
,
Melbourne, Australia
, accessed Aug. 1, 2013, https://atlassteels.com.au/
13.
Sakar, E., Özpolat, Ö. F., Bünyamin, A., Sayyed, M. I., Murat, K.,
2020
, “
Phy-X/PSD: Development of User Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry
,”
Radiat. Phys. Chem.
,
166
, pp.
1
12
.10.1016/j.radphyschem.2019.108496
14.
Jackson
,
D. F.
, and
Hawkes
,
D. J.
,
1981
, “
X-Ray Attenuation Coefficients of Elements and Mixtures
,”
Phys. Rep.
,
70
(
3
), pp.
169
233
.10.1016/0370-1573(81)90014-4
15.
Han
,
I.
, and
Demir
,
L.
,
2009
, “
Determination of Mass Attenuation Coefficients, Effective Atomic and Electron Numbers for Cr, Fe and Ni Alloys at Different Energies
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
267
(
1
), pp.
3
8
.10.1016/j.nimb.2008.10.004
16.
Manjunatha
,
H. C.
,
2017
, “
A Study of Gamma Attenuation Parameters in Poly Methyl Methacrylate and Kapton
,”
Radiat. Phys. Chem.
,
137
, pp.
254
259
.10.1016/j.radphyschem.2016.01.024
17.
Devillers
,
M. A. C.
,
1984
, “
Lifetime of Electrons in Metals at Room-Temperature
,”
Solid State Commun.
,
49
(
11
), pp.
1019
1022
.10.1016/0038-1098(84)90413-7
18.
Ziegler
,
J. F.
, and
Biersack
,
J. P.
,
1985
, “The Stopping and Range of Ions in Matter,”
Treatise on Heavy-Ion Science
,
Springer
, Boston, MA, pp.
93
129
.10.1007/978-1-4615-8103-1_3
19.
Ziegler
,
J. F.
,
Ziegler
,
M. D.
, and
Biersack
,
J. P.
,
2010
, “
SRIM—The Stopping and Range of Ions in Matter
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
268
(
11–12
), pp.
1818
1823
.10.1016/j.nimb.2010.02.091
20.
ICRU, 1984, "International Commission on Radiation Units and Measurements," ICRU Report 37, Stopping Powers for Electrons and Positrons.
21.
Wood
,
J.
,
1982
,
Computational Methods in Reactor Shielding
,
Pergamon Press
, Inc., New York.
22.
Martin
,
J. E.
,
2000
,
Physics for Radiation Protection
,
Wiley
,
New York
.
23.
Shultis
,
J. K.
, and
Faw
,
R. E.
,
2008
,
Fundamentals of Nuclear Science and Engineering
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
24.
Lilley
,
J. S.
,
2001
,
Nuclear Physics
,
Wiley
,
New York
.
25.
Reilly
,
D.
, Ensslin, N., Smith, H Jr., and Kreiner, S.,
1991
, Passive Nondestructive Analysis of Nuclear Materials,
U.S. Los Alamos National Laboratory
,
Los Alamos, NM
.10.2172/5428834
26.
Briesmeister
,
J. F.
,
1997
, “
MCNP-A General Monte Carlo N-Particle Transporte Code, Version 4B
,”
Los Alamos National Laboratory
,
Los Alamos, NM
,
Report No. LA12625-M.
27.
Attix
,
F.
,
1986
,
Introduction to Radiological Physics and Radiation Dosimetry
,
Wiley
,
New York
.
28.
Das
,
A.
, and
Ferbel
,
T.
,
2005
,
Introduction to Nuclear and Particle Physics
, 2nd ed.,
World Scientific Publishing Co. Pte. Ltd
., University of Rochester, Rochester, NY.
29.
Singh
,
K. J.
,
Singh
,
N.
,
Kaundal
,
R. S.
, and
Singh
,
K.
,
2008
, “
Gamma-Ray Shielding and Structural Properties of PbO-SiO2 Glasses
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
266
(
6
), pp.
944
948
.10.1016/j.nimb.2008.02.004
30.
Berger
,
M. J.
, Hubbell, J. H., Seltzer, S. M., Chang, J., Coursey, J. S., Sukumar, R., Zucker, D. S., and Olsen K.,
1998
, “
XCOM: Photon Cross Sections, Database
,” NIST, PML, Radiation Physics Division, Gaithersburg, MD.10.18434/T48G6X
31.
Marashdeh
,
M.
, and
Al-Hamarneh
,
I. F.
,
2021
, “
Evaluation of Gamma Radiation Properties of Four Types of Surgical Stainless Steel in the Energy Range of 17.50–25.29 keV
,”
Materials
,
14
(
22
), p.
6873
.10.3390/ma14226873
32.
Issa
,
S. A.
, Ahmadb, M., Tekind, H. O., Saddeekb, Y., and Sayyed, M. I.,
2019
, “
Effect of Bi2O3 Content on Mechanical and Nuclear Radiation Shielding Properties of Bi2O3-MoO3-B2O3-SiO2-Na2O-Fe2O3 Glass System
,”
Results Phys.
,
13
, pp.
1
14
.10.1016/j.rinp.2019.102165
33.
Sayyed
,
M. I.
,
Elbashir
,
B. O.
,
Tekin
,
H. O.
,
Altunsoy
,
E. E.
, and
Gaikwad
,
D. K.
,
2018
, “
Radiation Shielding Properties of Penta-Ternary Borate Glasses Using MCNPX Code
,”
J. Phys. Chem. Solids
,
121
, pp.
17
21
.10.1016/j.jpcs.2018.05.009
34.
Al-Hadeethi
,
Y.
, and
Sayyed
,
M. I.
,
2020
, “
A Comprehensive Study on the Effect of TeO2 on the Radiation Shielding Properties of TeO2-B2O3-Bi2O3-LiFeSrCl2 Glass System Using Phy-X/PSD Software
,”
Ceram. Int.
,
46
(
5
), pp.
6136
6140
.10.1016/j.ceramint.2019.11.078
35.
Askın
,
A.
,
2020
, “
Evaluation of the Radiation Shielding Capabilities of the Na2B4O7-SiO2-MoO3-Dy2O3 Glass Quaternary Using Geant4 Simulation Code and Phy-X/PSD Database
,”
Ceram. Int.
,
46
, pp.
9096
9102
.10.1016/j.ceramint.2019.12.158
36.
Al-Hadeethi
,
Y.
, and
Sayyed
,
M. I.
,
2019
, “
Analysis of Borosilicate Glasses Doped With Heavy Metal Oxides for Gamma Radiation Shielding Application Using Geant4 Simulation Code
,”
Ceram. Int.
,
45
(
18
), pp.
24858
24864
.10.1016/j.ceramint.2019.08.234
37.
Lakshminarayana
,
G.
,
Kebaili
,
I.
,
Dong
,
M. G.
,
Al-Buriahi
,
M. S.
,
Dahshan
,
A.
,
Kityk
,
I. V.
,
Lee
,
D.-E.
,
Yoon
,
J.
, and
Park
,
T.
,
2020
, “
Estimation of Gamma-Rays, and Fast and the Thermal Neutrons Attenuation Characteristics for Bismuth Tellurite and Bismuth Boro-Tellurite Glass Systems
,”
J. Mater. Sci.
,
55
(
14
), pp.
5750
5771
.10.1007/s10853-020-04446-4
You do not currently have access to this content.