Abstract

Graphene oxide (GO) and cellulose nanofibrils from pineapple leaf (PLCNF) and sugarcane bagasse (SCBCNF) have been utilized to observe the mechanical enhancement in composite bricks and radon reduction levels. The cellulose nanofibrils (CNFs) were produced using alkaline treatment and modified Hummer's method was used to synthesize GO. Control brick and composite bricks were fabricated using Malaysia Standard (MS 7.6:1972) with distinct ratios, embedded by CNFs and GO materials. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) were performed to analyze the crystallinity and functional groups in the CNFs. Surface morphology was analyzed using field emission scanning electron microscope (FESEM) to confirm the structural and nanosize of PL and SCBCNF. Mechanical characterization using universal testing machine was applied for compression test and Radex MR107+ was used to monitor Radon gas. The highest compressive strength was recorded in PLCNF/GO brick 4 which is 16.092 MPa compared to control and commercial concrete brick with value of 8.482 and 15.681 MPa, respectively, and radon gas emanation was reduced up to 50% compared to the control. These findings underscore the dual benefits of incorporating CNFs and GO into composite bricks, offering superior mechanical performance and enhanced health safety through radon gas mitigation, demonstrating their potential for sustainable and safe materials for multiple applications.

References

1.
Mahmud
,
M. A.
, and
Anannya
,
F. R.
,
2021
, “
Sugarcane Bagasse—A Source of Cellulosic Fiber for Diverse Applications
,”
Heliyon
,
7
(
8
), p.
e07771
.10.1016/j.heliyon.2021.e07771
2.
Korayem
,
A. H.
,
Ghoddousi
,
P.
,
Javid
,
A. A. S.
,
Oraie
,
M. A.
, and
Ashegh
,
H.
,
2020
, “
Graphene Oxide for Surface Treatment of Concrete: A Novel Method to Protect Concrete
,”
Constr. Build. Mater.
,
243
(
2
), p.
118229
.10.1016/j.conbuildmat.2020.118229
3.
Shari
,
N. A. S.
,
Razab
,
M. K. A. A.
,
Noor
,
A. M.
,
Mocktar
,
N. A.
,
Ghani
,
R. S. M.
,
Aziz
,
M. Z. A.
, and
Abdullah
,
N. H.
,
2022
, “
Internal Bonding Microstructures Characterisation Between Plant Nanocellulose and Concrete Mortar Mixtures for Indoor Radon-222 Gas Emanation Reduction
,”
Constr. Build. Mater.
,
350
, p.
128841
.10.1016/j.conbuildmat.2022.128841
4.
Bulut
,
H. A.
, and
Şahin
,
R.
,
2024
, “
Radon, Concrete, Buildings and Human Health—A Review Study
,”
Buildings
,
14
(
2
), p.
510
.10.3390/buildings14020510
5.
Kumar
,
A.
,
Negi
,
Y. S.
,
Choudhary
,
V.
, and
Bhardwaj
,
N. K.
,
2020
, “
Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis From Sugarcane Bagasse as Agro-Waste
,”
J. Mater. Phys. Chem.
,
2
(
1
), pp.
1
8
.10.1007/978-3-642-27758-0_1162-2
6.
Coletti
,
C.
,
Brattich
,
E.
,
Cinelli
,
G.
,
Cultrone
,
G.
,
Maritan
,
L.
,
Mazzoli
,
C.
,
Mostacci
,
D.
,
Tositti
,
L.
, and
Sassi
,
R.
,
2020
, “
Radionuclide Concentration and Radon Exhalation in New Mix Design of Bricks Produced Reusing NORM By-Products: The Influence of Mineralogy and Texture
,”
Constr. Build. Mater.
,
260
, p.
119820
.10.1016/j.conbuildmat.2020.119820
7.
Swedish Radiation Protection Institute, Stockholm (Sweden), Radiation and Nuclear Safety Authority, Helsinki (Finland), Icelandic Radiation Protection Institute, Reykjavik (Iceland), Norwegian Radiation Protection Authority, Oslo (Norway), and National Institute of Radiation Hygiene, Copenhagen (Denmark)
,
2000
, “
Naturally Occurring Radioactivity in the Nordic Countries—Recommendations
,”
Swedish Radiation Protection Institute, Stockholm, Sweden
.
8.
Righi
,
S.
, and
Bruzzi
,
L.
,
2006
, “
Natural Radioactivity and Radon Exhalation in Building Materials Used in Italian Dwellings
,”
J. Environ. Radioact.
,
88
(
2
), pp.
158
170
.10.1016/j.jenvrad.2006.01.009
9.
Prasad
,
M.
,
Bossew
,
P.
,
Shetty
,
T.
, and
Ramola
,
R. C.
,
2023
, “
Characteristics of 222Rn and 220Rn Equilibrium Factors in the Indoor Environments
,”
J. Environ. Radioact.
,
268–269
, p.
107262
.10.1016/j.jenvrad.2023.107262
10.
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR),
2000
, “
Sources and Effects of Ionizing Radiation—Report to General Assembly With Annexes
,”
United Nations, New York
,
Report
.https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
11.
Novo
,
L. P.
,
Bras
,
J.
,
García
,
A.
,
Belgacem
,
N.
, and
Curvelo
,
A. A. S.
,
2015
, “
Subcritical Water: A Method for Green Production of Cellulose Nanocrystals
,”
ACS Sustainable Chem. Eng.
,
3
(
11
), pp.
2839
2846
.10.1021/acssuschemeng.5b00762
12.
Klemm
,
D.
,
Heublein
,
B.
,
Fink
,
H. P.
, and
Bohn
,
A.
,
2005
, “
Cellulose: Fascinating Biopolymer and Sustainable Raw Material
,”
Angew. Chem., Int. Ed. Engl.
,
44
(
22
), pp.
3358
3393
.10.1002/anie.200460587
13.
Balakrishnan
,
P.
,
Gopi
,
S.
,
Geethamma
,
V. G.
,
Kalarikkal
,
N.
, and
Thomas
,
S.
,
2018
, “
Cellulose Nanofiber versus Nanocrystals From Pineapple Leaf Fiber: A Comparative Studies on Reinforcing Efficiency on Starch Nanocomposites
,”
Macromol. Symp.
,
380
(
1
), pp.
1
7
.10.1002/masy.201800102
14.
Sukmawan
,
R.
,
Rahmanta
,
A. P.
, and
Saputri
,
L. H.
,
2022
, “
The Effect of Repeated Alkali Pretreatments on the Morphological Characteristics of Cellulose From Oil Palm Empty Fruit Bunch Fiber-Reinforced Epoxy Adhesive Composite
,”
Int. J. Adhes. Adhes.
,
114
(
1–2
), p.
103095
.10.1016/j.ijadhadh.2022.103095
15.
Mahardika
,
M.
,
Abral
,
H.
,
Kasim
,
A.
,
Arief
,
S.
, and
Asrofi
,
M.
,
2018
, “
Production of Nanocellulose From Pineapple Leaf Fibers Via High-Shear Homogenization and Ultrasonication
,”
Fibers
,
6
(
2
), p.
28
.10.3390/fib6020028
16.
Gaba
,
E. W.
,
Asimeng
,
B. O.
,
Kaufmann
,
E. E.
,
Katu
,
S. K.
,
Foster
,
E. J.
, and
Tiburu
,
E. K.
,
2021
, “
Mechanical and Structural Characterization of Pineapple Leaf Fiber
,”
Fibers
,
9
(
8
), p.
51
.10.3390/fib9080051
17.
Melesse
,
G. T.
,
Hone
,
F. G.
, and
Mekonnen
,
M. A.
,
2022
, “
Extraction of Cellulose From Sugarcane Bagasse Optimization and Characterization
,”
Adv. Mater. Sci. Eng.
,
2022
, pp.
1
10
.10.1155/2022/1712207
18.
Plermjai
,
K.
,
Boonyarattanakalin
,
K.
,
Mekprasart
,
W.
,
Pavasupree
,
S.
,
Phoohinkong
,
W.
, and
Pecharapa
,
W.
,
2018
, “
Extraction and Characterization of Nanocellulose From Sugarcane Bagasse by Ball-Milling-Assisted Acid Hydrolysis
,”
AIP Conf. Proc.
,
2010
(
1
), p.
020005
.10.1063/1.5053181
19.
Sorani
,
S. I. A. M.
,
Rahman
,
N. K. A.
, and
Ismail
,
T. N. H. T.
,
2022
, “
Study on Mechanical Properties of Concrete Contain Untreated and Treated Pineapple Leaf Fiber
,”
Prog. Eng. Appl. Technol.
,
3
(
1
), pp.
306
316
.https://publisher.uthm.edu.my/periodicals/index.php/peat/article/view/6413/1978
20.
Vodounon
,
N. A.
,
Kanali
,
C.
, and
Mwero
,
J.
,
2018
, “
Compressive and Flexural Strengths of Cement Stabilized Earth Bricks Reinforced With Treated and Untreated Pineapple Leaves Fibres
,”
Open J. Compos. Mater.
,
8
(
4
), pp.
145
160
.10.4236/ojcm.2018.84012
21.
Sabziparvar
,
A. M.
,
Hosseini
,
E.
,
Chiniforush
,
V.
, and
Korayem
,
A. H.
,
2019
, “
Barriers to Achieving Highly Dispersed Graphene Oxide in Cementitious Composites: An Experimental and Computational Study
,”
Constr. Build. Mater.
,
199
, pp.
269
278
.10.1016/j.conbuildmat.2018.12.030
22.
Zhao
,
L.
,
Guo
,
X.
,
Song
,
L.
,
Song
,
Y.
,
Dai
,
G.
, and
Liu
,
J.
,
2020
, “
An Intensive Review on the Role of Graphene Oxide in Cement-Based Materials
,”
Constr. Build. Mater.
,
241
, p.
117939
.10.1016/j.conbuildmat.2019.117939
23.
Mianehrow
,
H.
,
Re
,
G. L.
,
Carosio
,
F.
,
Fina
,
A.
,
Larsson
,
P. T.
,
Chen
,
P.
, and
Berglund
,
L. A.
,
2020
, “
Strong Reinforcement Effects in 2D Cellulose Nanofibril-Graphene Oxide (CNF-GO) Nanocomposites Due to GO-Induced CNF Ordering
,”
J. Mater. Chem. A
,
8
(
34
), pp.
17608
17620
.10.1039/D0TA04406G
24.
Mokhtar
,
M. M.
,
Abo-El-Enein
,
S. A.
,
Hassaan
,
M. Y.
,
Morsy
,
M. S.
, and
Khalil
,
M. H.
,
2017
, “
Mechanical Performance, Pore Structure and Micro-Structural Characteristics of Graphene Oxide Nano Platelets Reinforced Cement
,”
Constr. Build. Mater.
,
138
, pp.
333
339
.10.1016/j.conbuildmat.2017.02.021
25.
Razab
,
M. K. A. A.
,
Noor
,
A. M.
,
Wong
,
K. N. S. W. S.
,
Mocktar
,
N. A.
,
Hikamarhakimi
,
N. A.
,
Razapi
,
N. F. M.
,
Mohamed
,
A. F. M.
,
Taib
,
N. H. M.
,
Ali
,
N. K. Y.
, and
Mansor
,
M. S.
,
2019
, “
Determination of Rn-222 Emanations From Kenaf Composite Brick
,”
AIP Conf. Proc.
,
2068
(
1
), p.
020047
.10.1063/1.5089346
26.
Shari
,
N. A. S.
,
Mocktar
,
N. A.
,
Noor
,
A. M.
,
Aziz
,
M. Z. A.
,
Mohammed
,
A.
, and
Razab
,
M. K. A. A.
,
2022
, “
Mechanical Enhancement of Composite Bricks Using Kenaf and Oil Palm Cellulose Nanofibrils
,”
Key Eng. Mater.
,
908
, pp.
651
657
.10.4028/p-58aq10
27.
Saidi
,
S. A.
,
Jaafar
,
M. S.
,
Razab
,
M. K. A. A.
,
Mat Rasat
,
M. S.
,
Ahmad
,
M. I.
,
Mohamed
,
M.
,
Mamat
,
S.
, and
Hussin
,
H.
,
2016
, “
Potential of Fabricated Light Foamed Concrete in Reducing Radon From Building Material
,”
Mater. Sci. Forum
,
840
, pp.
427
431
.10.4028/www.scientific.net/MSF.840.427
28.
Mocktar
,
N. A.
,
Razab
,
M. K. A. A.
, and
Noor
,
A. M.
,
2020
, “
Incorporating Kenaf and Oil Palm Nanocellulose in Building Materials for Indoor Radon Gas Emanation Reduction
,”
Radiat. Prot. Dosim.
,
189
(
1
), pp.
69
75
.10.1093/rpd/ncaa014
29.
Qureshi
,
T. S.
, and
Panesar
,
D. K.
,
2019
, “
Impact of Graphene Oxide and Highly Reduced Graphene Oxide on Cement Based Composites
,”
Constr. Build. Mater.
,
206
, pp.
71
83
.10.1016/j.conbuildmat.2019.01.176
30.
Murali
,
M.
,
Alaloul
,
W. S.
,
Mohammed
,
B. S.
,
Musarat
,
M. A.
,
Salaheen
,
M. A.
,
Al-Sabaeei
,
A. M.
, and
Isyaka
,
A.
,
2022
, “
Utilizing Graphene Oxide in Cementitious Composites: A Systematic Review
,”
Case Stud. Constr. Mater.
,
17
, p.
e01359
.10.1016/j.cscm.2022.e01359
31.
Yang
,
H.
,
Monasterio
,
M.
,
Cui
,
H.
, and
Han
,
N.
,
2017
, “
Experimental Study of the Effects of Graphene Oxide on Microstructure and Properties of Cement Paste Composite
,”
Composites, Part A
,
102
, pp.
263
272
.10.1016/j.compositesa.2017.07.022
32.
Janik
,
M.
,
Omori
,
Y.
, and
Yonehara
,
H.
,
2015
, “
Influence of Humidity on Radon and Thoron Exhalation Rates From Building Materials
,”
Appl. Radiat. Isot.
,
95
, pp.
102
107
.10.1016/j.apradiso.2014.10.007
You do not currently have access to this content.