In this study, we evaluated the oxidation resistance of austenitic stainless steels 316L and 310S in two different environments: air at 600°C and atmospheric pressure and supercritical water at 600°C and pressure of 25 MPa. Results indicated that both alloys showed good oxidation resistance in air by producing a protective oxide layer on their surface. In addition, alloy 310S exhibited lower weight gain during air oxidation compared to alloy 316L due to its higher content of chromium and nickel. Oxidation of alloy 310S in supercritical water was much lower than that of alloy 316L because of the formation of a protective layer of Mn2CrO4 spinel on the surface. No protective scale was formed on the surface of the alloy 316L, as magnetite (Fe3O4) and iron-chromium spinel (FeCr2O4) were the product of oxidation in supercritical water.

References

1.
Sun
,
C.
,
Hui
,
R.
,
Qu
,
W.
, and
Yick
,
S.
,
2009
, “
Progress in Corrosion Resistant Materials for Supercritical Water Reactors
,”
Corros. Sci.
,
51
(
11
), pp.
2508
2523
. 0010-938X10.1016/j.corsci.2009.07.007
2.
Kritzer
,
P.
,
2004
, “
Corrosion in High-Temperature and Supercritical Water and Aqueous Solutions: A Review
,”
J. Supercrit. Fluids
,
29
(
1–2
), pp.
1
29
. 0896-844610.1016/S0896-8446(03)00031-7
3.
Allen
,
T. R.
,
Balbaud-Celerier
,
F.
,
Asayama
,
T.
,
Pouchon
,
M.
,
Busby
,
J. T.
,
Maloy
,
S.
,
Park
,
J. Y.
,
Fazio
,
C.
,
Dai
,
Y.
,
Agostini
,
P.
,
Chevalier
,
J. P.
, and
Marrow
,
J.
,
2013
, “
Status Report on Structural Materials for Advanced Nuclear Systems
,”
Organisation For Economic Co-Operation and Development
, .
4.
Luo
,
X.
,
Tang
,
R.
,
Long
,
C.
,
Miao
,
Z.
,
Peng
,
Q.
, and
Li
,
C.
,
2007
, “
Corrosion Behavior of Austenitic and Ferritic Steels in Supercritical Water
,”
Nucl. Eng. Technol.
,
40
(
2
), pp.
147
154
.10.5516/NET.2008.40.2.147
5.
Nezakat
,
M.
,
Akhiani
,
H.
,
Penttilä
,
S.
,
Sabet
,
M.
, and
Szpunar
,
J.
,
2015
, “
Effect of Thermo-Mechanical Processing on Oxidation of Austenitic Stainless Steel 316L in Supercritical Water
,”
Corros. Sci.
,
94
, pp.
197
206
. 0010-938X10.1016/j.corsci.2015.02.008
6.
Penttilä
,
S.
,
Toivonen
,
A.
,
Li
,
J.
,
Zheng
,
W.
, and
Novotny
,
R.
,
2013
, “
Effect of Surface Modification on the Corrosion Resistance of Austenitic Stainless Steel 316L in Supercritical Water Conditions
,”
J. Supercrit. Fluids
,
81
, pp.
157
163
. 0896-844610.1016/j.supflu.2013.05.002
7.
Hayward
,
T. M.
,
Svishchev
,
I. M.
, and
Makhija
,
R. C.
,
2003
, “
Stainless Steel Flow Reactor for Supercritical Water Oxidation: Corrosion Tests
,”
J. Supercrit. Fluids
,
27
(
3
), pp.
275
281
. 0896-844610.1016/S0896-8446(02)00264-4
8.
Sun
,
M.
,
Wu
,
X.
,
Zhang
,
Z.
, and
Han
,
E.
,
2009
, “
Oxidation of 316 Stainless Steel in Supercritical Water
,”
Corros. Sci.
,
51
(
5
), pp.
1069
1072
. 0010-938X10.1016/j.corsci.2009.03.008
9.
Sekine
,
M.
,
Sakaguchi
,
N.
,
Endo
,
M.
,
Kinoshita
,
H.
,
Watanabe
,
S.
,
Kokawa
,
H.
,
Yamashita
,
S.
,
Yano
,
Y.
, and
Kawai
,
M.
,
2011
, “
Grain Boundary Engineering of Austenitic Steel PNC316 for Use in Nuclear Reactors
,”
J. Nucl. Mater.
,
414
(
2
), pp.
232
236
. 0022-311510.1016/j.jnucmat.2011.03.049
10.
Fulger
,
M.
,
Mihalache
,
M.
,
Ohai
,
D.
,
Fulger
,
S.
, and
Valeca
,
S. C.
,
2011
, “
Analyses of Oxide Films Grown on AISI 304L Stainless Steel and Incoloy 800HT Exposed to Supercritical Water Environment
,”
J. Nucl. Mater.
,
415
(
2
), pp.
147
157
. 0022-311510.1016/j.jnucmat.2011.05.007
11.
Betova
,
I.
,
Bojinov
,
M.
,
Kinnunen
,
P.
,
Penttilä
,
S.
, and
Saario
,
T.
,
2007
, “
Surface Film Electrochemistry of Austenitic Stainless Steel and Its Main Constituents in Supercritical Water
,”
J. Supercrit. Fluids
,
43
(
2
), pp.
333
340
. 0896-844610.1016/j.supflu.2007.06.005
12.
Gómez-Briceño
,
D.
,
Blázquez
,
F.
, and
Sáez-Maderuelo
,
A.
,
2013
, “
Oxidation of Austenitic and Ferritic/Martensitic Alloys in Supercritical Water
,”
J. Supercrit. Fluids
,
78
, pp.
103
113
. 0896-844610.1016/j.supflu.2013.03.014
13.
Tan
,
L.
,
Allen
,
T. R.
, and
Yang
,
Y.
,
2011
, “
Corrosion Behavior of Alloy 800H (Fe–21Cr–32Ni) in Supercritical Water
,”
Corros. Sci.
,
53
(
2
), pp.
703
711
. 0010-938X10.1016/j.corsci.2010.10.021
14.
OECD Nuclear Energy Agency
,
2014
, “
Technology Roadmap Update for Generation IV Nuclear Energy Systems
,” pp.
1
66
.
15.
Gao
,
X.
,
Wu
,
X.
,
Zhang
,
Z.
,
Guan
,
H.
, and
Han
,
E.
,
2007
, “
Characterization of Oxide Films Grown on 316L Stainless Steel Exposed to H2O2-Containing Supercritical Water
,”
J. Supercrit. Fluids
,
42
(
1
), pp.
157
163
. 0896-844610.1016/j.supflu.2006.12.020
16.
Asselin
,
E.
,
Alfantazi
,
A.
, and
Rogak
,
S.
, “
Corrosion of Nickel–Chromium Alloys, Stainless Steel and Niobium at Supercritical Water Oxidation Conditions
,”
Corros. Sci.
,
52
(
1
), pp.
118
124
. 0010-938X10.1016/j.corsci.2009.08.053
17.
Was
,
G. S.
,
Ampornrat
,
P.
,
Gupta
,
G.
,
Teysseyre
,
S.
,
West
,
E. A.
,
Allen
,
T. R.
,
Sridharan
,
K.
,
Tan
,
L.
,
Chen
,
Y.
,
Ren
,
X.
, and
Pister
,
C.
,
2007
, “
Corrosion and Stress Corrosion Cracking in Supercritical Water
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
176
201
. 0022-311510.1016/j.jnucmat.2007.05.017
18.
Kaneda
,
J.
,
Kasahara
,
S.
,
Kano
,
F.
,
Saito
,
N.
,
Shikama
,
T.
, and
Matsui
,
H.
,
2011
, “
Material Development for Supercritical Water-Cooled Reactor
,”
The 5th International Symposium on SCWR (ISSCWR-5)
,
Canadian Nuclear Society
.
19.
Baindur
,
S.
,
2008
, “
Materials Challenges for the Supercritical Water-Cooled Reactor (SCWR)
,”
Bull. Can. Nucl. Soc.
,
29
(
1
), pp.
32
38
.
20.
Birks
,
N.
,
Meier
,
G. H.
, and
Pettit
,
F. S.
,
2006
,
High-Temperature Oxidation of Metals
, 2nd ed.,
Cambridge University Press
,
New York
.
21.
Young
,
D.
,
2008
,
High Temperature Oxidation and Corrosion of Metals
, 1st ed.,
Elsevier
,
Oxford
.
22.
Guillamet
,
R.
,
Lopitaux
,
J.
,
Hannoyer
,
B.
, and
Lenglet
,
M.
,
1993
, “
Oxidation of Stainless Steels (AISI 304 and 316) at High Temperature. Influence on the Metallic Substratum
,”
J. Phys. IV
,
3
(
C9
), pp.
349
356
. 10.1051/jp4:1993935
23.
Peraldi
,
R.
, and
Pint
,
B.
,
2004
, “
Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air With Water Vapor
,”
Oxid. Met.
,
61
(
5–6
), pp.
463
483
. 0030-770X10.1023/B:OXID.0000032334.75463.da
24.
Akhiani
,
H.
,
Nezakat
,
M.
,
Penttilä
,
S.
, and
Szpunar
,
J.
,
2015
, “
The Oxidation Resistance of Thermo-Mechanically Processed Incoloy 800HT in Supercritical Water
,”
J. Supercrit. Fluids
,
101
, pp.
150
160
. 0896-844610.1016/j.supflu.2015.03.019
25.
Mahboubi
,
S.
,
Button
,
G. A.
, and
Kish
,
J.
,
2014
, “
Oxide Scales Formed on Austinitic Fe-Cr-Ni Alloys Exposed to Supercritical Water: Role of Alloying Elements
,”
The 19th Pacific Basin Nuclear Conference, PBNC
,
Canadian Nuclear Society
.
You do not currently have access to this content.