Conceptual molten salt breeder reactor (MSBR) is under development in Bhabha Atomic Research Centre (BARC) with long-term objective of utilizing abundant thorium available in India. It is based on molten salts, which acts as fuel, blanket, and coolant for the reactor. LiF–ThF4 (77.6–22.4 mol %) is proposed as a blanket salt for Indian MSBR. A laboratory scale molten salt natural circulation loop (MSNCL) named molten active fluoride salt loop (MAFL) has been setup for thermal-hydraulic, material compatibility, and chemistry control studies. Steady-states and transient experiments have been performed in the operating temperature range of 600–750 °C. The loop operates in the power range of 250–550 W. Steady-state correlation given for natural circulation flow in a loop is compared with the steady-state experimental data. The Reynolds number was found to be in the range of 57–114. Computation fluid dynamics (CFD) simulation has also been performed for MAFL using openfoam code, and the results are compared with the experimental data generated in the loop. It has been found that predictions of openfoam are in good agreement with the experimental data. In this paper, features of the loop, its construction, and the experimental and numerical studies performed are discussed in detail.

References

1.
Bettis
,
E. S.
,
Cottrell
,
W. B.
,
Mann
,
E. R.
,
Meem
,
J. L.
, and
Whitman
,
G. D.
,
1957
, “
The Aircraft Reactor Experiment-Operation
,”
Nucl. Sci. Eng.
,
2
(
6
), pp.
841
853
.
2.
Rosenthal
,
M. W.
,
Kasten
,
P. R.
, and
Briggs
,
R. B.
,
1970
, “
Molten Salt Reactors-History, Status and Potential
,”
Nucl. Appl. Technol.
,
8
(2), pp. 107–117.
3.
Serp
,
J.
,
Allibert
,
M.
,
Benes
,
O.
,
Delpech
,
S.
,
Feynberg
,
O.
,
Ghetta
,
V.
,
Heuer
,
D.
,
Holcomb
,
D.
,
Ignatiev
,
V.
,
Kloosterman
,
J. L.
,
Luzzi
,
L.
,
Lucotte
,
E. M.
,
Uhlír
,
J.
,
Yoshioka
,
R.
, and
Zhimin
,
D.
,
2014
, “
The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives
,”
Prog. Nucl. Energy
,
77
, pp.
308
319
.
4.
NEA
,
2015
, “
Introduction of Thorium in the Nuclear Fuel Cycle, Short to Long Term Considerations
,” Nuclear Energy Administration, Beijing, China, OECD/NEA Report No.
7224
.
5.
Vijayan
,
P. K.
,
Basak
,
A.
,
Dulera
,
I. V.
,
Vaze
,
K. K.
,
Basu
,
S.
, and
Sinha
,
R. K.
,
2015
, “
Conceptual Design of Indian Molten Salt Breeder Reactor
,”
Pramana-J. Phys.
,
85
(
3
), pp.
539
554
.
6.
Borgohain
,
A.
,
Srivstava
,
A. K.
,
Srivastava
,
A. K.
,
Gupta
,
A.
,
Maheshwari
,
N. K.
,
Krishnani
,
P. D.
, and
Vijayan
,
P. K.
,
2015
, “
Conceptual Design of a Pool Type Molten Salt Breeder Reactor
,”
Thorium Energy Conference
(
ThEC15
), Mumbai, India, Oct. 12–15, Paper No. 58.
7.
Cornwell
,
K.
,
1971
, “
The Thermal Conductivity of Molten Salts
,”
J. Phys.
,
4
(
3
), pp.
441
445
.
8.
Cooke
,
J. W.
, 1973, “
Development of the Variable Gap Technique for Measuring the Thermal Conductivity of Fluoride Salt Mixture
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL-4831
.
9.
Smirnov
,
M. V.
,
Khoklov
,
V. A.
, and
Filatov
,
E. S.
,
1987
, “
Thermal Conductivity of Molten Alkali Halides and Their Mixtures
,”
Electrochem. Acta
,
32
(
7
), pp.
1019
1026
.
10.
Bradshaw
,
R. W.
,
Cordaro
,
J. G.
, and
Siegel
,
N. P.
,
2009
, “
Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power System
,”
ASME
Paper No. ES2009-90140.
11.
Tortorelli
,
P. F.
, and
DeVan
,
J. H.
,
1982
, “
Thermal Convection Loop Study of the Corrosion of Fe-Ni-Cr Alloys by Molten NaNO3–KNO3
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-8298
.
12.
Goods
,
S. H.
,
1983
, “
The Effect of Molten Nitrate Salt Environment on the Mechanical Properties of Incoloy Alloy 800
,”
J. Mater. Energy Syst.
,
5
(
1
), pp.
28
35
.
13.
Wu
,
Y.
,
Bin
,
L.
,
Fang
,
M.
, and
Hang
,
G.
,
2009
, “
Convective Heat Transfer in Laminar-Turbulent Transition Region With Molten Salt in a Circular Tube
,”
Exp. Therm. Fluid Sci.
,
33
(
7
), pp.
1128
1132
.
14.
Bin
,
L.
,
Wu
,
Y.
,
Fang
,
M.
,
Meng
,
Y.
, and
Hang
,
G.
,
2009
, “
Turbulent Convective Heat Transfer With Molten Salt in a Circular Pipe
,”
Int. Commun. Heat Mass Transfer
,
36
(
9
), pp.
912
916
.
15.
Wu
,
X.
,
Yan
,
C.
,
Meng
,
Z.
,
Chen
,
K.
,
Song
,
S.
,
Yang
,
Z.
, and
Yu
,
J.
,
2016
, “
Numerical Analysis of the Passive Heat Removal System for Molten Salt Reactor at Steady State
,”
Appl. Therm. Eng.
,
102
, pp.
1337
1344
.
16.
Chen
,
Y. S.
,
Wang
,
Y.
,
Zhang
,
J. H.
,
Yuan
,
X. F.
,
Tian
,
J.
,
Tang
,
Z. F.
,
Zhu
,
H. H.
,
Fu
,
Y.
, and
Wang
,
N. X.
,
2016
, “
Convective Heat Transfer Characteristics in the Turbulent Region of Molten Salt in Concentric Tube
,”
Appl. Therm. Eng.
,
98
, pp.
213
219
.
17.
Srivastava
,
A. K.
,
Vaidya
,
A. M.
,
Maheshwari
,
N. K.
, and
Vijayan
,
P. K.
,
2013
, “
Heat Transfer and Pressure Drop Characteristics of Molten Fluoride Salt in Circular Pipe
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
198
205
.
18.
Srivastava
,
A. K.
,
Kudariyawar
,
J. Y.
,
Borgohain
,
A.
,
Jana
,
S. S.
,
Maheshwari
,
N. K.
, and
Vijayan
,
P. K.
,
2016
, “
Experimental and Theoretical Studies on the Natural Circulation Behavior of Molten Salt Loop
,”
Appl. Therm. Eng.
,
98
, pp.
513
521
.
19.
Kudariyawar
,
J. Y.
,
Vaidya
,
A. M.
,
Maheshwari
,
N. K.
, and
Satyamurthy
,
P.
,
2016
, “
Computational Study of Instabilities in a Rectangular Natural Circulation Loop Using 3D CFD Simulation
,”
Int. J. Therm. Sci.
,
101
, pp.
193
206
.
20.
Kudariyawar
,
J. Y.
,
Srivastava
,
A. K.
,
Vaidya
,
A. M.
,
Maheshwari
,
N. K.
, and
Satyamurthy
,
P.
,
2016
, “
Computational and Experimental Investigation of Steady State and Transient Characteristics of Molten Salt Natural Circulation Loop
,”
Appl. Therm. Eng.
,
99
, pp.
560
571
.
21.
Ferri
,
R.
,
Cammi
,
A.
, and
Mazzei
,
D.
,
2008
, “
Molten Salt Mixture Properties in RELAP5 Code for Thermodynamic Solar Application
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1676
1687
.
22.
Aufiero
,
M.
,
Cammi
,
A.
,
Geoffroy
,
O.
,
Losa
,
M.
,
Luzzi
,
L.
,
Ricotti
,
M. E.
, and
Rouch
,
H.
,
2014
, “
Development of an OpenFOAM Model for the Molten Salt Fast Reactor Transient Analysis
,”
Chem. Eng. Sci.
,
111
, pp.
390
401
.
23.
Holcomb
,
D. E.
, and
Cetiner
,
S. M.
, 2010, “
An Overview of Liquid-Fluoride-Salt Heat Transport Systems
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2010/156
.
24.
Yamaji
,
B.
,
Aszódi
,
A.
,
Kovács
,
M.
, and
Csom
,
G.
,
2014
, “
Thermal–Hydraulic Analyses and Experimental Modelling of MSFR
,”
Ann. Nucl. Energy
,
64
, pp.
457
471
.
25.
Patankar
,
S. V.
,
2013
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
, pp.
113
135
.
26.
Vijayan
,
P. K.
,
Bhojwani
,
V. K.
,
Bade
,
M. H.
,
Sharma
,
M.
,
Nayak
,
A. K.
,
Saha
,
D.
, and
Sinha
,
R. K.
,
2001
, “
Investigation on the Effect of Heater and Cooler Orientation on the Steady State Transient and Stability Behavior of Single-Phase Natural Circulation in a Rectangular Loop
,” Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India, Report No.
BARC/2001/E/034
.
27.
Vijayan
,
P. K.
,
Sharma
,
M.
, and
Saha
,
D.
,
2007
, “
Steady State and Stability Characteristics of Single-Phase Natural Circulation in a Rectangular Loop With Different Heater and Cooler Orientations
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
925
945
.
You do not currently have access to this content.