Abstract

The SPL approximation has been used to improve the accuracy of neutron transport solvers and has been widely used thanks to the diffusion like equations that can be solved with traditional diffusion codes. The objective of this work is to extend the AZtlan Nodal HEXagonal (AZNHEX) diffusion code capabilities to include SPL approximation. For achieving this goal, an independent preprocessor has been developed to determine new specific neutronic parameters based on the canonical form of the SPL approximation. The SPL neutronic parameters are used to conform an extended system of diffusion like differential equations that can be discretized and solved numerically. The degree of SPL approximation defines the number of equations. Since the original AZNHEX code solves one diffusion equation by means of an algebraic system (matrix) with size depending on energy groups, an artificial increase in the number of energy groups allows to increase the matrix order by adding additional rows and columns to the original matrix depending on the SPL order, SP3 increases the matrix order by two times, SP5 three times and SP7 four times. Two exercises are presented. The initial one for verification purposes in which the effects of mesh refinement and increase of SPL approximation degree are presented and discussed. It was shown that the percentage error between successive SPL approximations reduces in a consistent manner as the order of SPL approximation increases. A second case is presented for validation against a transport code. In this case it was shown that keff values approach asymptotically to the transport solver solution as the SPL degree of approximation increases and as mesh is finer.

References

1.
Gómez Torres
,
A. M.
,
Puente Espel
,
F.
,
del Valle Gallegos
,
E.
,
Francois Lacouture
,
J. L.
,
Martin del Campo
,
C.
, and
Espinosa Paredes
,
G.
,
2015
, “
Mexican Platform for Analysis and Design of Nuclear Reactors
,”
Proceedings of the International Congress on Advances in Nuclear Power Plants
(
ICAPP
), Nice, France, May 3–6, p.
10
.https://www.researchgate.net/publication/301647281_AZTLAN_Mexican_Platform_for_Analysis_and_Design_of_Nuclear_Reactors
2.
del Valle Gallegos
,
E.
,
López Solis
,
R.
,
Arriaga Ramírez
,
L.
,
Gómez Torres
,
A. M.
, and
Puente Espel
,
F.
,
2018
, “
Verification of the Multi-Group Code AZNHEX Using the OECD/NEA UAM Sodium Fast Reactor Benchmark
,”
Ann. Nucl. Energy
,
114
, pp.
592
602
.10.1016/j.anucene.2017.12.062
3.
Gómez Torres
,
A. M.
,
del Valle Gallegos
,
E.
,
Arriaga Ramírez
,
L.
,
López Solis
,
R.
,
Puente Espel
,
F.
,
Fridman
,
E.
, and
Kliem
,
S.
,
2017
, “
Verification of the Neutron Diffusion Code AZNHEX by Means of the Serpent-DYN3D and Serpent-PARCS Solution of the OECD/NEA SFR Benchmark
,” International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), Yekaterinburg, Russian Federation, June 26–29, Paper No.
IAEA-CN245-397
.https://www.researchgate.net/publication/318113220_Verification_of_the_neutron_diffusion_code_AZNHEX_by_means_of_the_Serpent-DYN3D_and_Serpent-PARCS_solution_of_the_OECDNEA_SFR_Benchmark
4.
Durigen
,
S.
,
2013
, “
Neutron Transport in Hexagonal Reactor Cores Modeled by Trigonal-Geometry Diffusion and Simplified P3 Nodal Methods
,” Ph.D. thesis,
Karlsruhe Institute of Technology (KIT), Department of Mechanical Engineering
, Karlsruhe, Germany.
5.
Larsen
,
E. W.
,
Morel
,
J. E.
, and
McGhee
,
J. M.
,
1993
, “
Asymptotic Derivation of the Simplified PN Equations
,”
Proceedings of the Joint International Conference on Mathematical Methods and Supercomputing in Nuclear Applications
, Karlsruhe, Germany, Apr. 19–23, pp.
718
729
.
6.
Larsen
,
E. W.
,
2010
, “
Asymptotic Diffusion and Simplified PN Approximations for Diffusive and Deep Penetration Problems—Part 1: Theory
,”
Transp. Theory Stat. Phys.
,
39
(
2–4
), pp.
110
163
.10.1080/00411450.2010.531878
7.
Pomraning
,
G. C.
,
1993
, “
Asymptotic and Variational Derivations of the Simplified PN Equations
,”
Ann. Nucl. Energy
,
20
(
9
), pp.
623
637
.10.1016/0306-4549(93)90030-S
8.
Hébert
,
A.
,
2009
,
Applied Reactor Physics
(The Transport Equation),
Presses Internationales Polytechnique
,
Montréal, QC, Canada
, Chap.
3
.
9.
Gelbard
,
E. M.
,
1960
, “
Application of Spherical Harmonics Method to Reactor Problems
,” Bettis Atomic Power Laboratory, Pittsburgh, PA, Report No. WAPD-BT-20.
10.
Gelbard
,
E. M.
,
1962
, “
Applications in the Simplified Spherical Harmonics Equations in Spherical Geometry
,” Bettis Atomic Power Laboratory, Pittsburgh, PA, Report No. WAPD-TM-294.
11.
Gelbard
,
E. M.
,
1968
, “
Spherical Harmonics Methods:
PL
and double-
PL
Approximations
,”
Computing Methods in Reactor Physics
,
H.
Greenspan
,
C. N.
Kelber
, and
D.
Okrent
, eds.,
Gordon and Breach Science Publishers
,
New York
, Chap.
4
.
12.
Bell
,
G. I.
, and
Glasstone
,
S.
,
1970
,
Nuclear Reactor Theory
,
Van Nostrand Reinhold Company
,
New York
, pp.
86
103
.
13.
Larsen
,
E. W.
,
Morel
,
J. E.
, and
McGhee
,
J. M.
,
1996
, “
Asymptotic Derivation of the Multigroup P1 and Simplified PN Equations With Anisotropic Scattering
,”
Nucl. Sci. Eng.
,
123
(
3
), pp.
328
342
.10.13182/NSE123-328
14.
Tomasěvic
,
D. I.
,
1994
, “
Variational Derivation of the Simplified P2 Nodal Approximation
,” Ph.D. thesis,
University of Michigan
, Ann Arbor, MI.
15.
Tomašević
,
D. I.
, and
Larsen
,
E. W.
,
1996
, “
The Simplified P2 Approximation
,”
Nucl. Sci. Eng.
,
122
(
3
), pp.
309
325
.10.13182/NSE96-A24167
16.
Brantley
,
P. S.
, and
Larsen
,
E. W.
,
2000
, “
The Simplified P3 Approximation
,”
Nucl. Sci. Eng.
,
134
(
1
), pp.
1
21
.10.13182/NSE134-01
17.
del Valle Gallegos
,
E.
,
1998
, “
Métodos Nodales en Transporte y Difusión de Partículas
,” Ph.D. thesis,
Departamento de Física
,
Escuela Superior de Física y Matemáticas
,
Instituto Politécnico Nacional
, Mexico City, Mexico.
18.
Estrada
,
J. E.
,
2015
, “
Métodos Nodales Aplicados a la Ecuación de Difusión de Neutrones Dependiente del Tiempo en Geometría Hexagonal-z
,” Master's thesis,
Departamento de Ingeniería Nuclear, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional
, Mexico City, Mexico.
19.
Albarrán
,
L. S.
, and
del Valle Gallegos
,
E.
,
2012
, “
Solución de la Aproximación SPL de las Ecuaciones de Transporte de Neutrones para Varios Grupos de Energía
,”
XVII Reunión Nacional Académica de Física y Matemáticas
, Mexico City, Mexico, Nov. 7–9, p.
361
.
20.
McClarren
,
R. G.
,
2010
, “
Theoretical Aspects of the Simplified Pn Equations
,”
Transp. Theory Stat. Phys.
,
39
(
2–4
), pp.
73
109
.10.1080/00411450.2010.535088
21.
Múgica Rodríguez
,
C. A.
,
2007
, “
Solución a la Ecuación de Transporte en Geometría Hexagonal Usando la Aproximación SN para Varias Condiciones de Simetría
,” Master's thesis,
Departamento de Ingeniería Nuclear, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional
, Mexico City, Mexico.
You do not currently have access to this content.