Abstract

In a reactor core meltdown under postulated severe accidents, the molten material (corium) could be ejected or relocated through existing vessel penetrations (cooling pipe connections), thus potentially contaminating other locations in the power plant. There exists, however, a potential for plugging of melt flow due to its complete solidification, providing the availability of an adequate heat sink. Therefore, a numerical model was created to simulate the flow of molten metal through an initially empty horizontal pipe. The numerical model was verified using a previously developed analytical model and validated against experimental tests with gallium (low melting temperature) as a substitute for corium. The numerical model was able to predict the penetration length (length of distance traveled by the molten metal) after a complete blockage occurred with an average percent error range of 9%. Since the numerical model has been verified and validated, the model was updated to predict the penetration length in the cooling pipe in case of a severe accident. The model was used to predict the penetration length for different Reynolds numbers and pipe diameters, which resulted in the range of penetration length from about 0.33 m to 0.93 m.

References

1.
Özisik
,
M. N.
, and
Mulligan
,
J. C.
,
1969
, “
Transient Freezing of Liquids in Forced Flow Inside Circular Tubes
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
385
389
.10.1115/1.3580190
2.
Bilenas
,
J.
, and
Jiji
,
L.
,
1970
, “
Variational Solution of Axisymmetric Fluid Flow in Tubes With Surface Solidification
,”
J. Franklin Inst.
,
289
(
4
), pp.
265
279
.10.1016/0016-0032(70)90270-X
3.
Epstein
,
M.
,
Yim
,
A.
, and
Cheung
,
F. B.
,
1977
, “
Freezing-Controlled Penetration of a Saturated Liquid Into a Cold Tube
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
233
238
.10.1115/1.3450674
4.
Shibani
,
A. A.
, and
Özisik
,
M. N.
,
1977
, “
Freezing of Liquids in Turbulent Flow Inside Tubes
,”
Can. J. Chem. Eng.
,
55
(
6
), pp.
672
677
.10.1002/cjce.5450550607
5.
Sadeghipour
,
M. S.
,
Özişik
,
M. N.
, and
Mulligan
,
J. C.
,
1981
, “
Transient Solidification of Liquid Metals in the Thermal Entry Region of a Circular Tube
,”
Nucl. Sci. Eng.
,
79
(
1
), pp.
9
18
.10.13182/NSE81-A19038
6.
Sadeghipour
,
M. S.
,
ÖZis¸Ik
,
M. N.
, and
Mulligan
,
J. C.
,
1982
, “
Transient € Freezing of a Liquid in a Convectively Cooled Tube
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
316
322
.10.1115/1.3245090
7.
Seeniraj
,
R. V.
, and
Hari
,
G. S.
,
2008
, “
Transient Freezing of Liquids in Forced Flow Inside Convectively Cooled Tubes
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
786
792
.10.1016/j.icheatmasstransfer.2008.01.012
8.
Sampson
,
P.
, and
Gibson
,
R.
,
1981
, “
A Mathematical Model of Nozzle Blockage by Freezing
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
231
241
.10.1016/0017-9310(81)90031-4
9.
Sampson
,
P.
, and
Gibson
,
R.
,
1982
, “
A Mathematical Model of Nozzle Blockage by Freezing—II. Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
25
(
1
), pp.
119
126
.10.1016/0017-9310(82)90240-X
10.
Sampson
,
P.
, and
Gibson
,
R.
,
1981
, “
Solidification of a Liquid Metal Flowing Through a Circular Pipe: A Prediction of Nozzle Blockage
,”
Adv. Eng. Software
, (1978),
3
(
1
), pp.
17
25
.10.1016/0141-1195(81)90049-8
11.
Wei
,
S.-S.
, and
Guceri
,
S. I.
,
1988
, “
Solidification in Developing Pipe Flows
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
225
232
.10.1016/0142-727X(88)90076-8
12.
Lee
,
S. L.
, and
Hwang
,
G. J.
,
1989
, “
Liquid Solidification in Low Peclet Number Pipe Flows
,”
Can. J. Chem. Eng.
,
67
(
4
), pp.
569
577
.10.1002/cjce.5450670407
13.
Yeow
,
Y. L.
,
Gethin
,
D. T.
, and
Lewis
,
R. W.
,
1990
, “
Solidification at the Entrance to a Subcooled Tube
,”
Ind. Eng. Chem. Res.
,
29
(
5
), pp.
896
901
.10.1021/ie00101a027
14.
Zerkle
,
R. D.
, and
Sunderland
,
J. E.
,
1968
, “
The Effect of Liquid Solidification in a Tube Upon Laminar-Flow Heat Transfer and Pressure Drop
,”
ASME J. Heat Transfer
,
90
(
2
), pp.
183
190
.10.1115/1.3597471
15.
Sadeghipour
,
M. S.
, and
Alborzi
,
K.
,
1994
, “
Axial Conduction in the Transient Laminar Freezing of Liquids in Convectively Cooled Tubes
,”
Numer. Heat Transfer, Part A: Appl.
,
25
(
4
), pp.
427
439
.10.1080/10407789408955958
16.
Barron
,
M. A.
,
Lopez
,
C.
, and
Medina
,
D. Y.
,
2014
, “
Heat Transfer and Solidification of Molten Iron in a Pipe
,”
Adv. Res.
,
2
(
12
), pp.
987
1002
.10.9734/AIR/2014/11625
17.
Sugawara
,
M.
,
Komatsu
,
Y.
, and
Beer
,
H.
,
2015
, “
Three-Dimensional Freezing of Flowing Water in a Tube Cooled by Air Flow
,”
Heat Mass Transfer
,
51
(
5
), pp.
703
711
.10.1007/s00231-014-1444-8
18.
Tang
,
V.
,
Spencer
,
J.
, and
Tang
,
J.
,
2016
, “
The Effect of the Molten Corium Temperature on the Predicted Melt Penetration
,”
13th International Conference on CANDU Fuel
, Kingston, ON, Canada, Aug. 15–18, pp.
1
8
.https://inis.iaea.org/search/search.aspx?orig_q=RN:50005394
19.
Depew
,
C. A.
, and
Zenter
,
R. C.
,
1969
, “
Laminar Flow Heat Transfer and Pressure Drop With Freezing at the Wall
,”
Int. J. Heat Mass Transfer
,
12
(
12
), pp.
1710
1714
.10.1016/0017-9310(69)90104-5
20.
Oliver
,
D.
,
1962
, “
The Effect of Natural Convection on Viscous-Flow Heat Transfer in Horizontal Tubes
,”
Chem. Eng. Sci.
,
17
(
5
), pp.
335
350
.10.1016/0009-2509(62)80035-9
21.
Hwang
,
G. J.
, and
Sheu
,
J. P.
,
1976
, “
Liquid Solidification in Combined Hydrodynamic and Thermal Entrance Region of a Circular Tube
,”
Can. J. Chem. Eng.
,
54
(
1–2
), pp.
66
71
.10.1002/cjce.5450540109
22.
Liu
,
H.-L.
, and
Hwang
,
G. J.
,
1977
, “
An Experiment on Liquid Solidification in Thermal Entrance Region of a Circular Tube
,”
Lett. Heat Mass Transfer
,
4
(
6
), pp.
437
444
.10.1016/0094-4548(77)90103-5
23.
Mulligan
,
J. C.
, and
Jones
,
D. D.
,
1976
, “
Experiments on Heat Transfer and Pressure Drop in a Horizontal Tube With Internal Solidification
,”
Int. J. Heat Mass Transfer
,
19
(
2
), pp.
213
219
.10.1016/0017-9310(76)90115-0
24.
Thomason
,
S. B.
,
Mulligan
,
J. C.
, and
Everhart
,
J.
,
1978
, “
The Effect of Internal Solidification on Turbulent Flow Heat Transfer and Pressure Drop in a Horizontal Tube
,”
ASME J. Heat Transfer
,
100
(
3
), pp.
387
394
.10.1115/1.3450820
25.
Gilpin
,
R. R.
,
1979
, “
The Morphology of Ice Structure in a Pipe at or Near Transition Reynolds Numbers
,”
AICHE Symposium Series
, San Diego, CA, pp.
89
94
.
26.
Gilpin
,
R. R.
,
1981
, “
Ice Formation in a Pipe Containing Flows in the Transition and Turbulent Regimes
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
363
368
.10.1115/1.3244467
27.
Hirata
,
T.
, and
Ishihara
,
M.
,
1985
, “
Freeze-Off Conditions of a Pipe Containing a Flow of Water
,”
Int. J. Heat Mass Transfer
,
28
(
2
), pp.
331
337
.10.1016/0017-9310(85)90066-3
28.
Hirata
,
T.
, and
Matsuzawa
,
H.
,
1987
, “
A Study of Ice Formation Phenomena on Freezing of Flowing Water in Pipe
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
965
970
.10.1115/1.3248211
29.
Somers-Neal
,
S.
,
Nguyen
,
V.
,
Matida
,
E.
,
Tang
,
V.
, and
Kaya
,
T.
,
2020
, “
Sensitivity Analysis of Unsteady Corium Solidification in an Initially Emptied Horizontal Turbulent Pipe Flow
,”
ASME J. Nucl. Rad. Sci.
,
6
(
1
), p.
011110
.10.1115/1.4044747
30.
Briggs
,
L. J.
,
1957
, “
Gallium: Thermal Conductivity; Supercooling; Negative Pressure
,”
J. Chem. Phys.
,
26
(
4
), pp.
784
786
.10.1063/1.1743405
31.
Incropera
,
D.
, and
Bergman
,
L.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
32.
Churchill
,
S. W.
,
1977
, “
Friction Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
(
24
), pp.
94
95
.
33.
Braunsfurth
,
M.
,
Skeldon
,
A.
,
Juel
,
A.
,
Mullin
,
T.
, and
Riley
,
D.
,
1997
, “
Free Convection in Liquid Gallium
,”
J. Fluid Mech.
,
342
, pp.
295
314
.10.1017/S0022112097005569
34.
Malekpour
,
A.
, and
Karney
,
B. W.
,
2011
, “
Rapid Filling Analysis of Pipelines With Undulating Profiles by the Method of Characteristics
,”
ISRN Appl. Math.
,
2011
, pp.
1
16
.10.5402/2011/930460
You do not currently have access to this content.