Abstract

A molecular derivatization method followed by gas chromatographic separation coupled with mass spectrometric detection was used to study photodegradation of molecular I2 adsorbed on solid SiO2 particles. The heterogeneous photodegradation of I2 was studied as a function of temperature and relative humidity in synthetic air to better understand its environmental fate. Two sets of experiments were carried out. In the first set of experiments, the temperature was T = (298 ± 1) K and relative humidity was varied from ≤ 2% to 75%RH under given experimental conditions. In the second set of experiments, the relative humidity within the Pyrex bulb was 40%RH and the temperature was varied from 283 ± 1 ≤ T (K) ≤ 323 ± 1. The obtained results show a considerably enhanced atmospheric lifetime of molecular iodine adsorbed on solid media that does not depend on relative humidity of the environment. The obtained results show that the rate constant for the photolysis of molecular iodine adsorbed on model SiO2 particles depends on temperature and is reported to be J(T)=(1.24 ± 1.4)×102×exp[(1482±345)/T]/s over the measured temperature range. The heterogeneous atmospheric residence time () of I2 adsorbed on solid media is calculated to range from 2 to 4.1 h. The experimentally obtained heterogeneous lifetime of I2 is shown to be considerably longer than its destruction by its principal atmospheric sink, photolysis. The observed enhanced atmospheric lifetime of I2 on heterogeneous media will likely have direct consequences on the atmospheric transport of I2 that influences the toxicity or the oxidative capacity of the atmosphere.

References

1.
Buseck
,
P. R.
, and
Pósfai
,
M.
,
1999
, “
Airborne Minerals and Related Aerosol Particles: Effects on Climate and the Environment
,”
Proc. Natl. Acad. Sci.
,
96
(
7
), pp.
3372
3379
.10.1073/pnas.96.7.3372
2.
Baker
,
A. R.
,
Thompson
,
D.
,
Campos
,
M. L. A. M.
,
Parry
,
S. J.
, and
Jickells
,
T. D.
,
2000
, “
Iodine Concentration and Availability in Atmospheric Aerosol
,”
Atmos. Environ.
,
34
(
25
), pp.
4331
4336
.10.1016/S1352-2310(00)00208-9
3.
Garland
,
J. A.
, and
Curtis
,
H.
,
1981
, “
Emission of Iodine From the Sea Surface in the Presence of Ozone
,”
J. Geophys. Res. Oceans
,
86
(
C4
), pp.
3183
3186
.10.1029/JC086iC04p03183
4.
Saiz-Lopez
,
A.
,
Plane
,
J. M. C.
,
Baker
,
A. R.
,
Carpenter
,
L. J.
,
von Glasow
,
R.
,
Gómez Martín
,
J. C.
,
McFiggans
,
G.
, and
Saunders
,
R. W.
,
2012
, “
Atmospheric Chemistry of Iodine
,”
Chem. Rev.
,
112
(
3
), pp.
1773
1804
.10.1021/cr200029u
5.
Bitter
,
M.
,
Ball
,
S. M.
,
Povey
,
I. M.
, and
Jones
,
R. L.
,
2005
, “
A Broadband Cavity Ringdown Spectrometer for In-Situ Measurements of Atmospheric Trace Gases
,”
Atmos. Chem. Phys.
,
5
(
9
), pp.
2547
2560
.10.5194/acp-5-2547-2005
6.
Finley
,
B. D.
, and
Saltzman
,
E. S.
,
2008
, “
Observations of Cl2, Br2, and I2 in Coastal Marine Air
,”
J. Geophys. Res. Atmos.
,
113
, p. D21301.10.1029/2008JD010269
7.
Huang
,
R.-J.
,
Seitz
,
K.
,
Buxmann
,
J.
,
Pöhler
,
D.
,
Hornsby
,
K. E.
,
Carpenter
,
L. J.
,
Platt
,
U.
, and
Hoffmann
,
T.
,
2010
, “
In Situ Measurements of Molecular Iodine in the Marine Boundary Layer: The Link to Macroalgae and the Implications for O3, IO, OIO and NOx
,”
Atmos. Chem. Phys.
,
10
(
10
), pp.
4823
4833
.10.5194/acp-10-4823-2010
8.
Leigh
,
R. J.
,
Ball
,
S. M.
,
Whitehead
,
J.
,
Leblanc
,
C.
,
Shillings
,
A. J. L.
,
Mahajan
,
A. S.
,
Oetjen
,
H.
,
Lee
,
J. D.
,
Jones
,
C. E.
,
Dorsey
,
J. R.
,
Gallagher
,
M.
,
Jones
,
R. L.
,
Plane
,
J. M. C.
,
Potin
,
P.
, and
McFiggans
,
G.
,
2010
, “
Measurements and Modelling of Molecular Iodine Emissions, Transport and Photodestruction in the Coastal Region Around Roscoff
,”
Atmos. Chem. Phys.
,
10
(
23
), pp.
11823
11838
.10.5194/acp-10-11823-2010
9.
Mahajan
,
A. S.
,
Oetjen
,
H.
,
Saiz‐Lopez
,
A.
,
Lee
,
J. D.
,
McFiggans
,
G. B.
, and
Plane
,
J. M.
,
2009
, “
Reactive Iodine Species in a Semi‐Polluted Environment
,”
Geophys. Res. Lett.
,
36
, p. L16803. 10.1029/2009GL038018
10.
Mahajan
,
A. S.
,
Plane
,
J. M. C.
,
Oetjen
,
H.
,
Mendes
,
L.
,
Saunders
,
R. W.
,
Saiz-Lopez
,
A.
,
Jones
,
C. E.
,
Carpenter
,
L. J.
, and
McFiggans
,
G. B.
,
2010
, “
Measurement and Modelling of Tropospheric Reactive Halogen Species Over the Tropical Atlantic Ocean
,”
Atmos. Chem. Phys.
,
10
(
10
), pp.
4611
4624
.10.5194/acp-10-4611-2010
11.
Peters
,
C.
,
Pechtl
,
S.
,
Stutz
,
J.
,
Hebestreit
,
K.
,
Hönninger
,
G.
,
Heumann
,
K.
,
Schwarz
,
A.
,
Winterlik
,
J.
, and
Platt
,
U.
,
2005
, “
Reactive and Organic Halogen Species in Three Different European Coastal Environments
,”
Atmos. Chem. Phys.
,
5
(
12
), pp.
3357
3375
.10.5194/acp-5-3357-2005
12.
Saiz-Lopez
,
A.
,
Saunders
,
R. W.
,
Joseph
,
D. M.
,
Ashworth
,
S. H.
, and
Plane
,
J. M. C.
,
2004
, “
Absolute Absorption Cross-Section and Photolysis Rate of I2
,”
Atmos. Chem. Phys. Discuss.
,
4
(
3
), pp.
2379
2403
.10.5194/acpd-4-2379-2004
13.
Saiz-Lopez
,
A.
,
Plane
,
J. M. C.
,
McFiggans
,
G.
,
Williams
,
P. I.
,
Ball
,
S. M.
,
Bitter
,
M.
,
Jones
,
R. L.
,
Hongwei
,
C.
, and
Hoffmann
,
T.
,
2006
, “
Modelling Molecular Iodine Emissions in a Coastal Marine Environment: The Link to New Particle Formation
,”
Atmos. Chem. Phys.
,
6
(
4
), pp.
883
895
.10.5194/acp-6-883-2006
14.
Kinoshita
,
N.
,
Sueki
,
K.
,
Sasa
,
K.
,
Kitagawa
,
J-I.
,
Ikarashi
,
S.
,
Nishimura
,
T.
,
Wong
,
Y.-S.
,
Satou
,
Y.
,
Handa
,
K.
,
Takahashi
,
T.
,
Sato
,
M.
, and
Yamagata
,
T.
,
2011
, “
Assessment of Individual Radionuclide Distributions From the Fukushima Nuclear Accident Covering Central-East Japan
,”
Proc. Natl. Acad. Sci.
,
108
(
49
), pp.
19526
19529
.10.1073/pnas.1111724108
15.
Momoshima
,
N.
,
Sugihara
,
S.
,
Ichikawa
,
R.
, and
Yokoyama
,
H.
,
2012
, “
Atmospheric Radionuclides Transported to Fukuoka, Japan Remote From the Fukushima Dai-Ichi Nuclear Power Complex Following the Nuclear Accident
,”
J. Environ. Radioact.
,
111
, pp.
28
32
.10.1016/j.jenvrad.2011.09.001
16.
Loewenstein
,
L. M.
, and
Anderson
,
J. G.
,
1985
, “
Rate and Product Measurements for the Reactions of Hydroxyl With Molecular Iodine and Iodine Chloride at 298 K: Separation of Gas-Phase and Surface Reaction Components
,”
J. Phys. Chem.
,
89
(
25
), pp.
5371
5379
.10.1021/j100271a012
17.
Koutsenogii
,
P. K.
, and
Jaenicke
,
R.
,
1994
, “
Number Concentration and Size Distribution of Atmospheric Aerosol in Siberia
,”
J. Aerosol Sci.
,
25
(
2
), pp.
377
383
.10.1016/0021-8502(94)90088-4
18.
Sharma
,
D.
,
Rai
,
J.
,
Israil
,
M.
, and
Singh
,
P.
,
2003
, “
Summer Variations of the Atmospheric Aerosol Number Concentration Over Roorkee, India
,”
J. Atmos. Sol.-Terr. Phys.
,
65
(
9
), pp.
1007
1019
.10.1016/S1364-6826(03)00146-9
19.
Chamberlain
,
A. C.
,
1960
, “
Aspects of the Deposition of Radioactive and Other Gases and Particles
,”
Int. J Air Pollut.
,
3
, pp. 63–88.
20.
Chamberlain
,
A. C.
, and
Chadwick
,
R. C.
,
1966
, “
Transport of Iodine From Atmosphere to Ground
,”
Tellus
,
18
(
2–3
), pp.
226
237
.10.3402/tellusa.v18i2-3.9676
21.
Gard
,
E. E.
,
1998
, “
Direct Observation of Heterogeneous Chemistry in the Atmosphere
,”
Science
,
279
(
5354
), pp.
1184
1187
.10.1126/science.279.5354.1184
22.
Shen
,
X.
,
Zhao
,
Y.
,
Chen
,
Z.
, and
Huang
,
D.
,
2013
, “
Heterogeneous Reactions of Volatile Organic Compounds in the Atmosphere
,”
Atmos. Environ.
,
68
, pp.
297
314
.10.1016/j.atmosenv.2012.11.027
23.
Figueiredo
,
A.
,
Strekowski
,
R. S.
,
Bosland
,
L.
,
Durand
,
A.
, and
Wortham
,
H.
,
2020
, “
Photolytic Degradation of Molecular Iodine Adsorbed on Model SiO2 Particles
,”
Sci. Total Environ.
,
723
, p.
137951
.10.1016/j.scitotenv.2020.137951
24.
Garland
,
J. A.
,
1967
, “
The Adsorption of Iodine by Atmospheric Particles
,”
J. Nucl. Energy
,
21
(
9
), pp.
687
700
.10.1016/0022-3107(67)90106-2
25.
Megaw
,
W. J.
,
1965
, “
The Adsorption of Iodine on Atmospheric Particles
,”
J. Nucl. Energy Parts A
,
19
(
8
), pp.
585
592
.10.1016/0368-3230(65)90115-1
26.
Keskinen
,
H.
,
Romakkaniemi
,
S.
,
Jaatinen
,
A.
,
Miettinen
,
P.
,
Saukko
,
E.
,
Jorma
,
J.
,
Mäkelä
,
J. M.
,
Virtanen
,
A.
,
Smith
,
J. N.
, and
Laaksonen
,
A.
,
2011
, “
On-Line Characterization of Morphology and Water Adsorption on Fumed Silica Nanoparticles
,”
Aerosol Sci. Technol.
,
45
(
12
), pp.
1441
1447
.10.1080/02786826.2011.597459
27.
Knipping
,
E. M.
,
2000
, “
Experiments and Simulations of Ion-Enhanced Interfacial Chemistry on Aqueous NaCl Aerosols
,”
Science
,
288
(
5464
), pp.
301
306
.10.1126/science.288.5464.301
28.
Coenen
,
H. H.
,
Mertens
,
J.
, and
Mazieère
,
B.
,
2006
, “
Radiation Reactions for Pharmaceuticals
,”
Compendium for Effective Synthesis Strategies
, Springer Science & Business Media
, Berlin.
29.
Deitz
,
V. R.
,
1987
, “
Interaction of Radioactive Iodine Gaseous Species With Nuclear-Grade Activated Carbons
,”
Carbon
,
25
(
1
), pp.
31
38
.10.1016/0008-6223(87)90037-6
30.
Rudolph
,
J.
,
Czuba
,
E.
, and
Huang
,
L.
,
2000
, “
The Stable Carbon Isotope Fractionation for Reactions of Selected Hydrocarbons With OH-Radicals and Its Relevance for Atmospheric Chemistry
,”
J. Geophys. Res. Atmos.
,
105
(
D24
), pp.
29329
29346
.10.1029/2000JD900447
31.
Rudolph
,
J.
,
Czuba
,
E.
,
Norman
,
A. L.
,
Huang
,
L.
, and
Ernst
,
D.
,
2002
, “
Stable Carbon Isotope Composition of Nonmethane Hydrocarbons in Emissions From Transportation Related Sources and Atmospheric Observations in an Urban Atmosphere
,”
Atmos. Environ.
,
36
(
7
), pp.
1173
1181
.10.1016/S1352-2310(01)00537-4
32.
Cantrell
,
C. A.
,
Shetter
,
R. E.
,
McDaniel
,
A. H.
,
Calvert
,
J. G.
,
Davidson
,
J. A.
,
Lowe
,
D. C.
,
Tyler
,
S. C.
,
Cicerone
,
R. J.
, and
Greenberg
,
J. P.
,
1990
, “
Carbon Kinetic Isotope Effect in the Oxidation of Methane by the Hydroxyl Radical
,”
J. Geophys. Res. Atmos.
,
95
(
D13
), pp.
22455
22462
.10.1029/JD095iD13p22455
33.
Mattei
,
C.
,
2019
, “
Réactivité Hétérogène de Pesticides Adsorbes Sur Des Particules Atmosphériques: Influence Des Paramètres Environnementaux Sur Les Cinétiques
,” Ph.D. thesis,
Aix-Marseille Université
, Marseille, France.
34.
Socorro
,
J.
,
Gligorovski
,
S.
,
Wortham
,
H.
, and
Quivet
,
E.
,
2015
, “
Heterogeneous Reactions of Ozone With Commonly Used Pesticides Adsorbed on Silica Particles
,”
Atmos. Environ.
,
100
, pp.
66
73
.10.1016/j.atmosenv.2014.10.044
35.
Baxter
,
G. P.
,
Hickey
,
C. H.
, and
Holmes
,
W. C.
,
1907
, “
The Vapor Pressure of Iodine
,”
J. Am. Chem. Soc.
,
29
(
2
), pp.
127
136
.10.1021/ja01956a004
36.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2020
, “
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,” J. Phys. Chem. Ref. Data, Monograph, 9(1998), pp.
1
1951
.
37.
Stull
,
D. R.
,
1947
, “
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds
,”
Ind. Eng. Chem.
,
39
(
4
), pp.
517
540
.10.1021/ie50448a022
38.
Mattei
,
C.
,
Wortham
,
H.
, and
Quivet
,
E.
,
2019
, “
Heterogeneous Degradation of Pesticides by OH Radicals in the Atmosphere: Influence of Humidity and Particle Type on the Kinetics
,”
Sci. Total Environ.
,
664
, pp.
1084
1094
.10.1016/j.scitotenv.2019.02.038
39.
Hartley
,
H.
, and
Campbell
,
N. P.
,
1908
, “
LXIX.—The Solubility of Iodine in Water
,”
J. Chem. Soc. Trans.
,
93
, pp.
741
745
.10.1039/CT9089300741
40.
Sander
,
S. P.
,
1986
, “
Kinetics and Mechanism of the Iodine Monoxide + Iodine Monoxide Reaction
,”
J. Phys. Chem.
,
90
(
10
), pp.
2194
2199
.10.1021/j100401a039
You do not currently have access to this content.