Abstract

Several small modular reactor (SMR) designs are emerging, but only the CANDU® SMR and a couple of Indian designs incorporate the familiar features of the larger CANDU reactors. This paper shows that while the CANDU-reactor concept did not seem to receive wider attention among SMR designers, it has influenced a few. The paper discusses how the CANDU-reactor operating experience can aid in the construction and operation of some SMRs. For example, the concept of passive reactor shutdown by draining the moderator, which was utilized in the early Pickering A units, is adopted in the Copenhagen Atomics Waste Burner; a molten slat (LiF-ThF4) heavy-water moderated reactor. The heavy-water and lithium in this salt produce tritium and can benefit from the CANDU-reactor experience in handling tritium. The online refueling of CANDU reactors, their large heat sinks, and seamless configuration are also reflected in SMR designs.

References

1.
CANDU Energy, Inc.
,
2020
, “
SMR: The Original Canadian Solution
,” CANDU Energy, Mississauga, ON, Canada, Mar. 1, 2021, https://www.snclavalin.com/~/media/Files/S/SNC-Lavalin/download-centre/en/brochure/our-candu-smr_en.pdf
2.
IAEA
,
2011
, “Status Report 74—Indian 220 MWe PHWR (IPHWR-220),” International Atomic Energy Agency, Vienna, Austria, Report.
3.
Rao
,
G. S. S. P.
,
Vijayan
,
P. K.
,
Jain
,
V.
,
Borgohain
,
A.
,
Sharma
,
M.
,
Nayak
,
A. K.
,
Belokar
,
D. G.
,
Pal
,
A. K.
,
Saha
,
D.
, and
Sinha
,
R. K.
,
2002
, “
AHWR Integral Test Loop Scaling Philosophy and System Description
,” Bhabha Atomic Research Centre, Mumbai, India, Report No. BARC-2002/E/017.
4.
Todosow
,
M.
,
Aronson
,
A.
,
Cheng
,
L.-Y.
,
Wigeland
,
R.
,
Bathke
,
C.
,
Murphy
,
C.
,
Boyer
,
B.
,
Doyle
,
J.
,
Fane
,
B.
, and
Ebbinghaus
,
B.
,
2010
, “
The Indian Advanced Heavy Water Reactor (AHWR) and Non-Proliferation Attributes
,” Brookhaven National Laboratory, Chicago, IL, Report No. BNL-98372-2012.
5.
Torgerson
,
D. F.
,
Shalaby
,
B. A.
, and
Pang
,
S.
,
2006
, “
CANDU Technology for Generation III+ and IV Reactors
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1565
1572
.10.1016/j.nucengdes.2006.04.020
6.
Gingras
,
Y.
, and
Khelfaoui
,
M.
,
2014
, “
La Centrale Nucléaire Gentilly-1: La Trajectoire Imprévisible D'une Innovation Technologique Avortée
,”
Rev. D'histoire L'Amérique Fr.
,
67
(
1
), pp.
57
81
.10.7202/1026616ar
7.
IAEA
,
2018
, “
Advances in Small Modular Reactor Technology Developments. A Supplement to: IAEA Advanced Reactors Information System (ARIS)
,” International Atomic Energy Agency, Vienna, Austria, Report.
8.
Hussein
,
E. M. A.
,
2020
, “
Emerging Small Modular Nuclear Power Reactors: A Critical Review
,”
Phys. Open
,
5
, p.
100038
.10.1016/j.physo.2020.100038
9.
CNSC
,
2009
, “
Positive Coolant Void Reactivity Feedback Phenomenon in Currently Operating CANDU Reactors
,” Canadian Nuclear Safety Commission, Ottawa, ON, Canada, Report No. E-DOCS #3399585.
10.
Kastanya
,
D.
,
Boyle
,
S.
,
Hopwood
,
J.
, and
Park
,
J. H.
,
2013
, “
The Impact of Power Coefficient of Reactivity on CANDU 6 Reactors
,”
Nucl. Eng. Technol.
,
45
(
5
), pp.
573
580
.10.5516/NET.03.2013.709
11.
CNSC, 2010, “Evaluation of Facilities Handling Tritium”, Canadian Nuclear Safety Commission, Ottawa, ON, Canada, Report No.
INFO-0796
.https://nuclearsafety.gc.ca/pubs_catalogue/uploads/Evaluation_of_facilities_handling_tritium_info-0796_e.pdf
12.
CNSC
,
2012
, “
Nuclear Power Plant Safety Systems
,” Canadian Nuclear Safety Commission, Ottawa, ON, Canada,
Report
.https://www.cnsc-ccsn.gc.ca/eng/reactors/power-plants/nuclear-power-plant-safety-systems/index.cfm
13.
Canadian Nuclear Society
,
2002
, “
Nuclear Power Demonstration Reactor 1962–1987
,” Canadian Nuclear Society, Toronto, ON, Canada, accessed Mar. 1, 2021, https://cns-snc.ca/media/history/npd/npd.html
14.
Dickie
,
W.
,
2006
, “
Safety Report, Revision 15
,” Bruce Nuclear Generating Station, Tiverton, ON, Canada, accessed Mar. 1, 2021, https://aeic-iaac.gc.ca/050/documents_staticpost/cearref_ 25738/135-01.pdf
15.
Chaplin
,
R.
,
2016
, “
Genealogy of CANDU Reactors
,”
The Essential CANDU—A Textbook on the CANDU Nuclear Power Plant Technology
,
University Network of Excellence in Nuclear Engineering (UNENE)
, Hamilton, ON, Canada, Ch. 2.
16.
Pedersen
,
T. J.
,
2017
, “
Copenhagen Atomics Waste Burner
,”
Molten Salt Reactors and Thorium Energy
,
T. J. Dolan, ed., Woodhead Publishing, Sawston, Cambridge, UK
, pp.
599
607
.
17.
IAEA
,
2011
, “
Status Report 96—High Temperature Gas Cooled Reactor—Pebble-Bed Module (HTR-PM)
,” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/HTR-PM.pdf
18.
IAEA
,
2011
, “
Status Report 70—Pebble Bed Modular Reactor (PBMR)
,” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/PBMR.pdf
19.
Boer
,
B.
,
2008
,
Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor
,
IOS Press
,
Amsterdam, The Netherlands
.
20.
IAEA
,
2016
, “
Status Report—MSR-FUJI
,” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/MSR-FUJI.pdf
21.
Engel
,
J. R.
,
Rhoades
,
W. A.
,
Grimes
,
W. R.
, and
Dearing
,
J. F.
,
1978
, “
Molten-Salt Reactors for Efficient Nuclear Fuel Utilization Without Plutonium Separation
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNLlTM-641.
22.
Ingram
,
G.
,
McCulloch
,
D. B.
, and
Sanders
,
J. E.
,
1959
, “
Neutron Lifetime Measurements in the Fast Reactors Zeus and Zephyr
,”
J. Nucl. Energy, Part A
,
10
(
1–2
), pp.
22
31
.10.1016/0368-3265(59)90093-3
23.
Meneley
,
D. A.
, and
Muzumdar
,
A. P.
,
2009
, “
Power Reactor Safety Comparison—A Limited Review
,”
Proceedings of CNS 30th Annual Conference
, Calgary, AB, Canada, May 31–June 3, pp.
113
123
.
24.
IAEA
,
2011
, “
Status Report LFTR
,” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/LFTR.pdf
25.
IAEA
, “TWR-P (TerraPower, U.S.A.),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/TWR-P.pdf
26.
Guo
,
H.
,
Buiron
,
L.
,
Kooyman
,
T.
, and
Sciora
,
P.
,
2019
, “
Optimized Control Rod Designs for Generation-IV Fast Reactors Using Alternative Absorbers and Moderators
,”
Ann. Nucl. Energy
,
132
, pp.
713
722
.10.1016/j.anucene.2019.07.007
27.
Krishnan
,
V. S.
, and
Gulshani
,
P.
,
1987
, “
Stability of Natural-Circulation Flow in a Candu-Type Fuel Channel
,”
Nucl. Eng. Des.
,
99
, pp.
403
412
.10.1016/0029-5493(87)90136-1
28.
IAEA
, “CLEAR-I (INEST, China),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/CLEAR-I.pdf
29.
IAEA
, “ELECTRA (KTH, Sweden),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/ELECTRA.pdf
30.
IAEA
,
2013
, “KLT-40S,” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/KLT-40S.pdf
31.
IAEA
, “MYRRHA (SCK.CEN, Belgium),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/MYRRHA.pdf
32.
Sterbentz
,
J. W.
,
Werner
,
J. E.
,
McKellar
,
M. G.
,
Hummel
,
A. J.
,
Kennedy
,
J. C.
,
Wright
,
R. N.
, and
Biersdorf
,
J. M.
,
2017
, “
Special Purpose Nuclear Reactor (5 MW) for Reliable Power at Remote Sites Assessment Report
,” Idaho National Lab, Idaho Falls, ID, Report No. INL/EXT-16-40741.
33.
IAEA
, “G4M (Gen4 Energy Inc., USA),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/G4M.pdf
34.
Grandy
,
C.
,
Sienicki
,
J.
,
Moisseytsev
,
A.
,
Krajtl
,
L.
,
Farmer
,
M.
, and
Kim
,
T. K.
,
2014
, “
Advanced Fast Reactor—100 (AFR-100) Report for the Technical Review Panel
,” Argonne National Laboratory, Lemont, IL, Report No. ANL-ARC-288.
35.
IAEA
,
2011
, “Status Report 72—Fixed Bed Nuclear Reactor (FBNR),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/FBNR.pdf
36.
IAEA
,
2016
, “Advances in Small Modular Reactor Technology Developments. A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2016 edition,” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/Publications/SMR-Book_2016.pdf
37.
IAEA
, “PGSFR (KAERI, Korea),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/PGSFR.pdf
38.
IAEA
, “PRISM (GE-Hitachi, USA),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/PRISM.pdf
39.
Transatomic Power
,
2016
, “Technical White Paper, V 2.1, Transatomic Power, Cambridge, MA, accessed Mar. 1, 2021, http://www.transatomicpower.com/wp-content/uploads/2015/04/TAP-White-Paper-v2.1.pdf
40.
IAEA
,
2011
, “Status Report 104—VVER-640 (V-407) (VVER-640 (V-407)),” International Atomic Energy Agency, Vienna, Austria, accessed Mar. 1, 2021, https://aris.iaea.org/PDF/VVER-640(V-407).pdf
41.
Ingham
,
P. J.
,
Mallory
,
J. P.
, and
Krishnan
,
V. S.
,
1987
, “
Two-Phase Natural Circulation in a CANDU-Type Heat Transport Loop
,” FED-Vol. 61/HTD-Vol. 92, pp.
253
264
.
You do not currently have access to this content.