Abstract

This work investigated the thermophysical characteristics of liquid indium–bismuth–tin eutectic alloy also known as Field's Metal for the purposes of use as a similar fluid for liquid metal reactors. The density, specific heat capacity, viscosity, thermal conductivity, and the coefficient of thermal expansion were determined for liquid Field's Metal for temperature ranges from its melting point 333 K to 423 K. The work captured the effect of temperature on these properties and each property's magnitude. The findings were used to create mathematical correlations to predict the value of the thermophysical property at a specified temperature for use in natural circulation studies. Notably, the work also observed non-Newtonian shear thinning behavior of the alloy near the melting point and that the non-Newtonian behavior relaxes as the material obtains more energy. The results are consistent with the behavior of other liquid metals including variances that occur close to the melting point.

References

1.
Shaikh
,
K. A.
,
Li
,
S.
, and
Liu
,
C.
,
2008
, “
Development of a Latchable Microvalve Employing a Low Melting Temperature Metal Alloy
,”
J. Microelectromech. Syst.
,
17
(
5
), pp.
1195
2003
.10.1109/JMEMS.2008.2003055
2.
Markvicka
,
E. J.
,
Bartlett
,
M. D.
,
Huang
,
X.
, and
Majidi
,
C.
,
2018
, “
An Autonomously Electrically Self-Healing Liquid Metal – Elastomer Composite for Robust Soft-Matter Robotics and Electronics
,”
Nat. Mater.
,
17
(
7
), pp.
618
624
.10.1038/s41563-018-0084-7
3.
Mei
,
S.
,
Gao
,
Y.
,
Deng
,
Z.
, and
Liu
,
J.
,
2014
, “
Thermally Conductive and Highly Electrically Resistive Grease Through Homogeneously Dispersing Liquid Metal Droplets Inside Methyl Silicone Oil
,”
ASME J. Electron. Packag.
,
136
(
1
), p.
011009
.10.1115/1.4026414
4.
Yang
,
T.
,
Foulkes
,
T.
,
Kwon
,
B.
,
Kang
,
J. G.
,
Braun
,
P. V.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2019
, “
An Integrated Liquid Metal Thermal Switch for Active Thermal Management of Electronics
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
9
(
12
), pp.
2341
2351
.10.1109/TCPMT.2019.2930089
5.
Dickey
,
M. D.
,
2014
, “
Emerging Applications of Liquid Metals Featuring Surface Oxides
,”
Appl. Mater. Interfaces
,
6
(
21
), pp.
18369
18379
.10.1021/am5043017
6.
Dean
,
R. N.
,
Harris
,
D. K.
,
Palkar
,
A. Y.
, and
Wonacott
,
G. D.
,
2012
, “
Liquid Metal-Filled Micro Heat Pipes for Thermal Management of Solid-State Devices
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4888
4894
.10.1109/TIE.2012.2196893
7.
Yeo
,
J.-S.
,
Lee
,
J.-H.
, and
Yoo
,
E.-J.
,
2018
, “
Electrochemical Properties of Environment-Friendly Lithium-Tin Liquid Metal Battery
,”
Electrochim. Acta
,
290
, pp.
228
235
.10.1016/j.electacta.2018.09.072
8.
Polzin
,
K. A.
,
2007
, “
Liquid Metal Pump Technologies for Nuclear Surface Power
,”
NASA
, Report No. TM-2007-214851.
9.
Coccoluto
,
G.
,
Gaggini
,
P.
,
Labanti
,
V.
,
Tarantino
,
M.
,
Ambrosini
,
W.
,
Forgione
,
N.
,
Napoli
,
A.
, and
Oriolo
,
F.
,
2011
, “
Heavy Liquid Metal Natural Circulation in a One-Dimensional Loop
,”
Nucl. Eng. Des.
,
241
(
5
), pp.
1301
1309
.10.1016/j.nucengdes.2010.06.048
10.
Palazzo
,
S.
,
2013
, “
Application of Advanced Thermal-Hydraulic Simulation Codes for the Analysis of Heavy Liquid Metal Flows in the ADS Reactor Concept MYRRHA
,” Ph.D. thesis,
University of Pisa
,
Italy
.
11.
Jaeger
,
W.
,
2017
, “
Heat Transfer to Liquid Metals With Empirical Models for Turbulent Forced Convection in Various Geometries
,”
Nucl. Eng. Des.
,
319
, pp.
12
27
.10.1016/j.nucengdes.2017.04.028
12.
Gao
,
Y.
,
Wang
,
L.
,
Li
,
H.
, and
Liu
,
J.
,
2014
, “
Liquid Metal as Energy Transportation Medium or Coolant Under Harsh Environment With Temperature Below Centigrade
,”
Energy
,
8
(
1
), pp.
49
61
.10.1007/s11708-013-0285-3
13.
Zuo
,
J.
,
Tian
,
W.
,
Chen
,
R.
,
Qiu
,
S.
, and
Su
,
G.
,
2013
, “
Research on Enhancement of Natural Circulation Capability in Lead-Bismuth Alloy Cooled Reactor by Using Gas-Lift Pump
,”
Nucl. Eng. Des.
,
263
, pp.
1
9
.10.1016/j.nucengdes.2013.04.005
14.
Loewen
,
E. P.
,
2005
, “
Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility: R&D Requirements, Design Criteria, Design Concept and Concept Guidance
,” Idaho National Laboratory, Idaho Falls, Report No. INL/EXT-05-00267.
15.
Uchimura
,
K.
,
Matsumoto
,
T.
,
Harvel
,
G. D.
, and
Chang
,
J. S.
,
1995
, “
Visualization of Liquid Metal Two-Phase Flow by a Real Time Neutron Radiography System
,”
Trans. Inst. Electron., Inf. Commun. Eng. D-II
,
J78
(
11
), pp.
1710
1712
.
16.
International Atomic Energy Agency
,
2014
, “
Nuclear Power Reactors in the World
,” International Atomic Energy Agency, Vienna, Report No. RDS No. 2, accessed Apr. 14, 2021, https://www-pub.iaea.org/MTCD/Publications/PDF/rds-2-34_web.pdf
17.
International Atomic Energy Agency
,
2007
, “
Status of Small Reactor Designs Without On-Site Refuelling
,” International Atomic Energy Agency, Vienna, Report No. IAEA-TECDOC-1536, accessed Apr. 14, 2021, https://www-pub.iaea.org/MTCD/Publications/PDF/te_1536_web.pdf
18.
Witusiewicz
,
V. T.
,
Hect
,
U.
,
Bottger
,
B.
, and
Rex
,
S.
,
2007
, “
Thermodynamic Re-Optimization of the Bi-in-Sn System Based on New Experimental Data
,”
J. Alloys Compd.
,
42
, pp.
115
124
.10.1016/j.jallcom.2006.03.050
19.
Sunagawa
,
T.
,
Lipchitz
,
A.
, and
Harvel
,
G.
,
2014
, “
Study of Eutectic Low-Melting Alloy Using in, Bi, and Sn
,”
J. Fukui Univ. Technol.
,
1
, pp.
374
379
.
20.
Indium Corporation
,
2011
, “Indalloy Specialty Alloys Properties Chart,”
Indium Corporation
, Clinton, NY, accessed Apr. 14, 2021, https://www.indium.com/blog/indium-corporation-wall-chart.php
21.
FungiLabs, 2012,
Smart Series Rotational Viscometer
,”
Instruction Manual
, Version 1.2,
FungiLabs
, Hauppauge,
New York
, p.
66
.
22.
Sobolev
,
V.
, and
Benamati
,
G.
,
2007
, “
Thermophysical and Electrical Properties
,”
Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Material Compatibility
,
Thermal-Hydraulics and Technologies, Nuclear Energy Agency (NEA)
, Paris, France, Chap. 2, pp.
25
99
.
23.
Jeyakumar
,
M.
,
Hamed
,
M.
, and
Shankar
,
S.
,
2011
, “
Rheology of Liquid Metals and Alloys
,”
J. Non-Newtonian Fluid Mech.
,
166
(
14–15
), pp.
831
838
.10.1016/j.jnnfm.2011.04.014
24.
Callister Jr
,
W. D.
,
2005
,
Fundamentals of Materials Science and Engineering
, 2nd ed.,
Wiley & Sons
,
Hoboken, NJ
.
25.
Lipchitz
,
A.
,
Laurent
,
L.
, and
Harvel
,
G. D.
,
2012
, “
Suitability of Eutectic Field's Metal for Use in an Electromagnetohydrodynamically-Enhanced Experimental Two-Phase Flow Loop
,” 20th
International Conference on Nuclear Engineering
, Anaheim, CA, July 30–Aug. 3, Paper No. ICONE20-Power 2012–54531.
26.
Lipchitz
,
A.
,
Harvel
,
G.
, and
Sunagawa
,
T.
,
2013
, “
Determination of Specific Heat of Eutectic Indium - Bismuth - Tin Liquid Metal Alloys as a Test Material for Liquid-Metal Cooled Applications
,”
Recent Trends Mater. Mech. Eng. II, Appl. Mech. Mater.
,
420
, pp.
185
191
.10.4028/www.scientific.net/AMM.420.185
27.
TA Instruments
,
1998
,
Differential Scanning Calorimeter
,
Operating Manual, TA Instruments
, Newcastle, DE.
28.
Maitre
,
A.
,
Fiorani
,
J. M.
, and
Vilasi
,
M.
,
2002
, “
Thermodynamic Study of Phase Equilibria in the Pb-Bi-Hg System
,”
J. Phase Equilib.
,
23
(
4
), pp.
329
338
.10.1361/105497102770331578
29.
Singh
,
R. N.
, and
Sommer
,
F.
,
2012
, “
Viscosity of Liquid Alloys: Generalization of Andrade's Equation
,”
Monatsh. Chem.
,
143
(
9
), pp.
1235
1242
.10.1007/s00706-012-0728-2
30.
Echendu
,
O. K.
, and
Anusionwu
,
B. C.
,
2011
, “
An Investigation of the Viscosities of Various Groups of Liquids Metals
,”
Afr. Rev. Phys.
,
6
, pp.
35
40
.
31.
Kajihara
,
Y.
,
Inui
,
M.
,
Ohara
,
K.
, and
Matsuda
,
K.
,
2020
, “
Experimental Observation of Density Fluctuations in Liquid Metals Associated With Liquid-Liquid, Liquid-Gas, and Metal-Nonmetal Transitions
,”
J. Phys. Condens. Matter
,
32
, pp.
1
14
.10.1088/1361-648X/ab7d66
32.
Zhou
,
K.
,
Wang
,
H. P.
,
Chang
,
J.
, and
Wei
,
B.
,
2015
, “
Experimental Study of Surface Tension, Specific Heat and Thermal Diffusivity of Liquid and Solid Titanium
,”
Chem. Phys. Lett.
,
639
, pp.
105
108
.10.1016/j.cplett.2015.09.014
33.
Nuclear Energy Agency
,
2015
,
Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties
, 2015 ed.,
Materials Compatibility, Thermal-Hydraulics and Technologies
, Paris, France.
34.
Dobosz
,
A.
,
Plevachuk
,
Y.
,
Sklyarchuk
,
V.
,
Sokoliuk
,
B.
,
Tkach
,
O.
, and
Gancarz
,
T.
,
2019
, “
Liquid Metals in High-Temperature Cooling Systems: The Effect of Bi Additions for the Physicochemical Properties of Eutectic Ga−Sn−Zn
,”
J. Chem. Eng. Data
,
64
(
2
), pp.
404
411
.10.1021/acs.jced.8b00519
35.
Akbulut
,
S.
,
Ocak
,
Y.
,
Maraşlı
,
N.
,
Keşlioğlu
,
K.
,
Kaya
,
H.
, and
Çadırlı
,
E.
,
2008
, “
Determination of Solid-Liquid Interfacial Energies in the in-Bi-Sn Ternary Alloy
,”
J. Phys. D Appl. Phys.
,
41
(
17
), p.
175302
.10.1088/0022-3727/41/17/175302
36.
Argonne National Laboratory Reactor Engineering Division
,
1995
, “
Thermodynamic and Transport Properties of Sodium Liquid and Vapor
,” Argonne National Laboratory, Argonne, Report No. ANL/RE-95/2.
37.
Stieglitz
,
R.
,
2007
, “
Low Prandtl Number Thermal-Hydraulics, Chapter 10 in “Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Material Properties Compatibility, Thermal-Hydraulics and Technologies
,”
Nucl. Energy Agency
, 1, pp.
399
477
.
You do not currently have access to this content.