Abstract
A series of experiments were performed to measure the vortex-excited response of a 0.168-m-dia slender circular cylinder in a range of linear shear velocity profiles. Reynolds numbers of up to 2.5 × 105 were achieved. The results clearly showed that regular large-amplitude cylinder vibrations occurred well within the critical drag transition region. It was found that increasing the linear shear profile decreased the peak amplitude response but broadened the range of lock-on over which large oscillations occurred. The flow-induced vibration of the cylinder caused amplification of the mean hydrodynamic drag forces acting on the cylinder when compared with those expected for a similar rigid cylinder.