The probability distribution of the maximum wave height in a sea state is examined in terms of the spectral peakedness and the sea state duration. The study is based on the analysis of numerically simulated Gaussian wave records with given target spectra to fulfill the long duration and stationarity jointly required conditions, seldom found in nature. Results indicate a clear dependence of the probability distribution structure and location on the record length and the spectral shape.

1.
Longuet-Higgins
,
M. S.
, 1952, “
On the Statistical Distribution of the Heights of Sea Waves
,”
J. Mar. Res.
0022-2402,
11
, pp.
245
266
.
2.
Walden
,
A. T.
, and
Prescot
,
P.
, 1980, “
The Asymptotic Distribution of the Maximum of N Wave Crest Heights for Any Value of the Spectral Width Parameter
,”
J. Geophys.
0340-062X,
50
(
C4
), pp.
1905
1909
.
3.
Rice
,
S. O.
, 1944, 1945, “
The Mathematical Analysis of Random Noise
,”
Bell Systems Tech. J.
, 23, 24. Reprinted in selected papers on
Noise and Stochastic Processes
,
N.
Wax
, ed.,
Dover Publ. Inc.
, New York, 1954.
4.
Goda
,
Y.
, 1988, “
Statistical Variability of Sea State Parameters as a Function of Wave Spectrum
,”
Coast. Eng. Japan
0578-5634,
31
(
1
), pp.
39
52
.
5.
Marsaglia
,
G.
, and
Zaman
,
A.
, 1994, “
Some Portable Very-Long Period Random Number Generators
,”
Comput. Phys.
0894-1866,
8
(
1
), pp.
117
121
.
6.
Matsumoto
,
M.
, and
Nishimura
,
T.
, 1998, “
Marsenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator
,”
ACM Trans. Model. Comput. Simul.
1049-3301,
8
, pp.
3
30
.
7.
Corniero
,
M. A.
,
Losada
,
M. A.
, and
Giménez-Curto
,
L. A.
, 1985, “
Distribution of Maximum Wave Height
,”
J. Waterw., Port, Coastal, Ocean Eng.
0733-950X,
8
(
1
), pp.
3
30
.
You do not currently have access to this content.