This paper presents simulated results of a computational study conducted to analyze the impulse waves generated by the subaerial landslide at Lituya Bay, Alaska. The volume of fluid method is used to track the free surface and shoreline movements. The renormalization group turbulence model and detached eddy simulation multiscale model were used to simulate turbulence dissipation. The subaerial landslide is simulated using a sliding mass. Results from the two-dimensional simulations are compared with the results from a scaled-down experiment. The experiment is carried out at a 1:675 scale. In the experimental setup, the subaerial rockslide impact into the Gilbert Inlet, wave generation, propagation, and runup on the headland slope is considered in a geometrically undistorted Froude similarity model. The rockslide is simulated by a granular material driven by a pneumatic acceleration mechanism so that the impact characteristics can be controlled. Simulations are performed for different values of the landslide density to estimate the influence of slide deformation on the generated tsunami characteristics. Simulated results show the complex flow patterns in terms of the velocity field, shoreline evolution, and free surface profiles. The predicted wave runup height is in close agreement with both the observed wave runup height and that obtained from the scaled-down experimental model.

1.
Schwaiger
,
H. F.
, and
Higman
,
B.
, 2007, “
Lagrangian Hydrocode Simulations of the 1958 Lituya Bay Tsunamigenic Rockslide
,”
Geochem., Geophys., Geosyst.
1525-2027,
8
(
7
), p.
Q07006
.
2.
Masson
,
D. G.
,
Harbitz
,
C. B.
,
Wynn
,
R. B.
,
Pedersen
,
G.
, and
Lovholt
,
F.
, 2006, “
Submarine Landslides: Processes, Triggers and Hazard Prediction
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
364
, pp.
2009
2039
.
3.
Longva
,
O.
,
Janbu
,
N.
,
Blikra
,
L. H.
, and
Boe
,
R.
, 2003, “
The Finneidfjord Slide: Seafloor Failure and Slide Dynamics
,”
Submarine Mass Movements and Their Consequences
,
J.
Locat
and
J.
Mienert
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
531
538
.
4.
Fine
,
I. V.
,
Rabinovich
,
A. B.
,
Bornhold
,
B. D.
,
Thomson
,
R. E.
, and
Kulikov
,
E. A.
, 2005, “
The Grand Banks Landslide-Generated Tsunami of November 18, 1929: Preliminary Analysis and Numerical Modeling
,”
Mar. Geol.
0025-3227,
203
, pp.
201
218
.
5.
Piper
,
D. J. W.
,
Cochonat
,
P.
, and
Morrison
,
M. L.
, 1999, “
The Sequence of Events Around the Epicenter of the 1929 Grand Banks Earthquake: Initiation of Debris Flows and Turbidity Currents Inferred From Sidescan Sonar
,”
Sedimentology
0037-0746,
46
, pp.
79
97
.
6.
Miller
,
D. J.
, 1960, “
Giant Waves in Lituya Bay, Alaska
,” Geological Survey Professional Paper 354-C, U.S. Government Printing Office, Washington, DC.
7.
Harbitz
,
C. B.
,
Lovholt
,
F.
,
Pederson
,
G.
, and
Masson
,
D. G.
, 2006, “
Mechanisms of Tsunami Generation by Submarine Landslides: A Short Review
,”
Norwegian Journal of Geology
,
86
, pp.
255
264
.
8.
Grilli
,
S. T.
, and
Watts
,
P.
, 2005, “
Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analysis
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
131
, pp.
283
297
.
9.
Mader
,
C. L.
, and
Gittings
,
M. L.
, 2002, “
Modeling the 1958 Lituya Bay Mega Tsunami-II
,”
Sci. Tsunami Hazards
8755-6839,
20
(
4
), pp.
241
355
.
10.
Gisler
,
G.
,
Weaver
,
R.
,
Mader
,
C.
, and
Gittings
,
M. L.
, 2003, “
Two- and Three-Dimensional Simulations of Asteroid Ocean Impacts
,”
Sci. Tsunami Hazards
8755-6839,
21
(
2
), pp.
119
134
.
11.
Gisler
,
G.
,
Weaver
,
R.
, and
Gittings
,
M. L.
, 2006, “
SAGE Calculations of the Tsunami Threat From La Palma
,”
Sci. Tsunami Hazards
8755-6839,
24
(
4
), pp.
288
312
.
12.
Liu
,
P. L.-F.
,
Wu
,
T. -R.
,
Raichlen
,
F.
,
Synolakis
,
C. E.
, and
Borrero
,
J. C.
, 2005, “
Runup and Rundown Generated by Three-Dimensional Sliding Masses
,”
J. Fluid Mech.
0022-1120,
536
, pp.
107
144
.
13.
Grilli
,
S. T.
, and
Watts
,
P.
, 1999, “
Modeling of Waves Generated by a Moving Submerged Body. Applications to Underwater Landslides
,”
Eng. Anal. Boundary Elem.
0955-7997,
23
, pp.
645
656
.
14.
Lynett
,
P.
, and
Liu
,
P. L.-F.
, 2005, “
A Numerical Study of the Runup Generated by Three-Dimensional Landslides
,”
J. Geophys. Res.
0148-0227,
110
(
C03006
).
15.
Rzadkiewicz
,
A. S.
,
Mariotti
,
C.
, and
Heinrich
,
P.
, 1997, “
Numerical Simulation of Submarine Landslides and Their Hydraulic Effects
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
123
(
4
), pp.
149
157
.
16.
Heinrich
,
P.
, 1992, “
Nonlinear Water Waves Generated by Submarine and Aerial Landslides
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
118
(
3
), pp.
249
266
.
17.
Quecedo
,
M.
,
Pastor
,
M.
, and
Herreros
,
M. I.
, 2004, “
Numerical Modeling of Impulse Wave Generated by Fast Landslides
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
1633
1656
.
18.
Yakhot
,
V.
, and
Smith
,
L. M.
, 1992, “
The Renormalization Group, the e-Expansion and Derivation of Turbulence Models
,”
J. Sci. Comput.
0885-7474,
7
, pp.
35
61
.
19.
Basu
,
D.
, 2006, “
Hybrid Methodologies for Multiscale Separated Turbulent Flow Simulations
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
20.
Fritz
,
H. M.
,
Hager
,
W. H.
, and
Minor
,
H. E.
, 2001, “
Lituya Bay Case: Rockslide Impact and Wave Run-Up
,”
Sci. Tsunami Hazards
8755-6839,
19
(
1
), pp.
3
22
.
21.
Flow Sciences Incorporated
, 2006, “
Flow3D Users Manual Version-9.1
,” Santa Fe, NM.
22.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
23.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow
,”
Phys. Fluids
1070-6631,
8
, pp.
2182
2189
.
24.
Welch
,
J. E.
,
Harlow
,
F. H.
,
Shannon
,
J. P.
, and
Daly
,
B. J.
, 1966, “
The MAC Method: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid Flow Problems Involving Free-Surfaces
,” Los Alamos Scientific Laboratory, Report No. LA-3425.
25.
Hirt
,
C. W.
, and
Sicilian
,
J. M.
, 1985, “
A Porosity Technique for the Definition of Obstacles in Rectangular Cell Meshes
,”
Proceedings of the Fourth International Conference on Ship Hydrodynamics
,
National Academy of Sciences
,
Washington, DC
, pp.
1
19
.
26.
Basu
,
D.
,
Hamed
,
A.
,
Das
,
K.
,
Tomko
,
K.
, and
Liu
,
Q.
, 2006, “
Comparative Analysis of Hybrid Turbulence Closure Models in Unsteady Transonic Separated Flow Simulations
,” Paper No. AIAA-2006-0117.
You do not currently have access to this content.