A low order potential based panel code is used to analyze the flow around the blades of a horizontal axis marine current turbine. An empirical vortex model is assumed for the turbine wake, which includes the variation of pitch of the helicoidal vortices trailing behind the blades. The analysis is carried out for uniform inflow conditions in steady flow for a turbine with controllable pitch for two different pitch settings in a wide range of tip-speed-ratios. Grid convergence studies carried out to verify the accuracy of predicted pressure distributions and integrated forces show a fast convergence with grid refinement for this geometry. The effect of the helicoidal wake model parameters used in the analysis is found to have a strong influence in the performance curves. The results are compared with experimental data from literature and with the lifting line theory. A discussion of viscous effects is also provided to help explaining the main discrepancies with the data.

1.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
, 2006, “
Hydrodynamics of Marine Current Turbines
,”
Renewable Energy
0960-1481,
31
(
2
), pp.
249
256
.
2.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
, 2008, “
The Prediction of the Hydrodynamic Performance of Marine Current Turbines
,”
Renewable Energy
0960-1481,
33
(
5
), pp.
1085
1096
.
3.
Chattot
,
J. -J.
, 2003, “
Optimization of Wind Turbines Using Helicoidal Vortex Model
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
(
4
), pp.
418
424
.
4.
Chattot
,
J. -J.
, 2002, “
Design and Analysis of Wind Turbines Using Helicoidal Vortex Model
,”
Comput. Fluid Dyn. J.
0918-6654,
11
(
1
), pp.
50
54
.
5.
Sharpe
,
D.
, 2003, “
A Lifting Line Theory for the Determination of Wind Turbine Blade Optimum Performance
,”
Proceedings of the European Wind Energy Conference
.
6.
Falcão de Campos
,
J. A. C.
, 2007,“
Hydrodynamic Power Optimization of a Horizontal Axis Marine Current Turbine With Lifting Line Theory
,”
Proceedings of the 17th International Offshore and Polar Engineering Conference
,
ISOPE
,
Lisbon, Portugal
, Vol.
1
, pp.
307
313
.
7.
Kerwin
,
J. E.
,
Kinnas
,
S. A.
,
Lee
,
J. -T.
, and
Shih
,
W. -Z.
, 1987, “
A Surface Panel Method for the Hydrodynamic Analysis of Ducted Propellers
,”
SNAME Transactions
,
95
, pp.
93
122
.
8.
Kinnas
,
S. A.
, 1996, “
Theory and Numerical Methods for the Hydrodynamic Analysis of Marine Propulsors
,”
Advances in Marine Hydrodynamics
(
Advances in Fluid Mechanics
Vol.
5
),
M.
Ohkusu
, ed.,
Computational Mechanics
,
Southampton, Boston, MA
, Chap. 6, pp.
279
322
.
9.
Kinnas
,
S. A.
, 2001,
Super-Cavitating Hydrofoils and Propellers: Prediction of Performance and Design
(
Lecture Series Monographs
),
Von Kármán Institute for Fluid Dynamics
,
Rhode-Saint-Genese, Belgium
.
10.
Vaz
,
G.
, 2005, “
Modelling of Sheet Cavitation on Hydrofoils and Marine Propellers Using Boundary Element Methods
,” Ph.D. thesis, Instituto Superior Técnico, Lisbon, Portugal.
11.
Baltazar
,
J.
, and
Falcão de Campos
,
J. A. C.
, 2008, “
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine With a Boundary Element Method
,”
Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, OMAE2008
.
12.
Falcão de Campos
,
J. A. C.
, 2000, “
A Panel Method for the Calculation of the Incompressible Potential Flow on Propellers
,” IST-MARETEC, Technical Report No. J537-2.
13.
Baltazar
,
J.
,
Falcão de Campos
,
J. A. C.
, and
Bosschers
,
J.
, 2005, “
A Study on the Modeling of Marine Propeller Tip Flows Using BEM
,”
Congreso de Métodos Numéricos en Ingeniería
,
SEMNI
,
Granada, Spain
.
14.
Baltazar
,
J.
, 2008, “
On the Modelling of the Potential Flow About Wings and Marine Propellers Using a Boundary Element Method
,” Ph.D. thesis, Instituto Superior Técnico, Lisbon, Portugal.
15.
Falcão de Campos
,
J. A. C.
,
Ferreira de Sousa
,
P. J. A.
, and
Bosschers
,
J.
, 2006, “
A Verification Study on Low-Order Three-Dimensional Potential-Based Panel Codes
,”
Comput. Fluids
0045-7930,
35
(
1
), pp.
61
73
.
16.
Baltazar
,
J.
, and
Falcão de Campos
,
J. A. C.
, 2009, “
Unsteady Analysis of a Horizontal Axis Marine Current Turbine in Yawed Inflow Conditions With a Panel Method
,”
First International Symposium on Marine Propulsors, smp’09
, pp.
186
194
.
17.
Young
,
Y.
,
Motley
,
M.
, and
Yeung
,
R.
, 2009, “
Hydroelastic Response of Wind or Tidal Turbines
,”
Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009
.
18.
Bahaj
,
A. S.
,
Molland
,
A. F.
,
Chaplin
,
J. R.
, and
Batten
,
W. M. J.
, 2007, “
Power and Thrust Measurements of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank
,”
Renewable Energy
0960-1481,
32
(
3
), pp.
407
426
.
19.
Sørensen
,
J.
,
Mikkelsen
,
R.
,
Troldborg
,
N.
, and
Okulov
,
V.
, 2007, “
Modelling of Wind Turbine Wakes
,”
Wind Turbine Aerodynamics. A State-of-the-Art
(
Von Karman Institute Lecture Series
Vol.
5
),
J. F.
Brouckaert
, ed.,
Von Karman Institute for Fluid Dynamics
,
Rhode-Saint-Genese, Belgium
, Chap. 3.
20.
Hoshino
,
T.
, 1989, “
Hydrodynamic Analysis of Propellers in Steady Flow Using a Surface Panel Method. 2nd Report: Flow Field Around Propeller
,”
J. Soc. Nav. Archit. Jpn.
0514-8499,
166
, pp.
79
92
.
21.
Eça
,
L.
, 1994, “
Grid Generation With a System of Elliptical Partial Differential Equations
,” Technical Report D10-2, Instituto Superior Técnico, Lisbon, Portugal, June.
22.
Morino
,
L.
, and
Kuo
,
C. -C.
, 1974, “
Subsonic Potential Aerodynamics for Complex Configurations: A General Theory
,”
AIAA J.
0001-1452,
12
(
2
), pp.
191
197
.
23.
Bahaj
,
A. S.
,
Batten
,
W. M. J.
, and
McCann
,
G.
, 2007, “
Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines
,”
Renewable Energy
0960-1481,
32
(
15
), pp.
2479
2490
.
You do not currently have access to this content.