Precise evaluation of the performance of aging structures is particularly essential in the oil and gas industry, where inaccurate predictions of structural performance may lead to significantly hazardous consequences. It is also important to accurately predict the corrosion behavior of pipeline structures used in the production of gas in subsea areas. The effects of pipeline failure due to a significant reduction in burst strength make it hard for pipeline operators to maintain pipeline serviceability. Therefore, the serviceability of ongoing subsea gas pipelines should be assessed according to their burst strength capacities, which should not exceed the maximum allowable operating pressure (MAOP). In this study, the critical part of the corrosion along a 2.4 km pipeline was evaluated using two approaches: an empirical design codes formula and Ansys numerical analysis. The future integrity of the aging pipeline was then assessed to predict its remaining years of service. The results and outcomes of this study will be useful in evaluating pipeline integrity and predicting the remaining service life of aging pipeline structures.

References

1.
ASME
,
2009
,
Manual for Determining the Remaining Strength of Corroded Pipelines: A Supplement to ASME B31G Code for Pressure Piping
,
ASME
,
New York
.
2.
Szary
,
T.
,
2006
, “
The Finite Element Method Analysis for Assessing the Remaining Strength of Corroded Oil Field Casing and Tubing
,” Ph.D. thesis, Freiberg, Germany.
3.
Cosham
,
A.
, and
Hopkins
,
P.
,
2004
, “
An Overview of the Pipeline Defect Assessment Manual (PDAM)
,”
4th International Pipeline Technology Conference
, May 9–13,
Ostende, Belgium
.
4.
DNV
,
2010
,
Corroded Pipelines, DNV-RP-F101
,
Det Norske Veritas
,
Oslo, Norway
.
5.
Klever
,
F. J.
,
Stewart
,
G.
, and
Valk
,
C. A. C.
,
1995
, “
New Developments in Burst Strength Predictions for Locally Corroded Pipelines
,”
Proceedings of the 14th International Conference on Offshore Mechanics and Arctic Engineering (OMAE)
, Vol.
5
: Pipeline Technology, June 18–22,
Copenhagen, Denmark
, pp.
161
173
.
6.
Belachew
,
C. T.
,
Che Ismail
,
M.
, and
Karuppanan
,
S.
,
2009
, “
Evaluation of Available Codes for Capacity Assessment of Corroded Pipelines
,”
NACE East Asian and Pacific Regional Conference and Exposition
,
Kuala Lumpur, Malaysia
, July 13–15.
7.
Li
,
S. X.
,
Yu
,
S. R.
,
Zeng
,
H. L.
,
Li
,
J. H.
, and
Liang
,
R.
,
2009
, “
Predicting Corrosion Remaining Life of Underground Pipelines With a Mechanically-Based Probabilistic Model
,”
J. Pet. Sci. Eng.
,
65
(
3
), pp.
162
166
.10.1016/j.petrol.2008.12.023
8.
Guohua
,
C.
, and
Shuho
,
D.
,
1996
, “
Study on the Reliability Assessment Methodology for Pressure Vessels Containing Defects
,”
Int. J. Pressure Vessels Piping
,
69
(
3
), pp.
273
277
.10.1016/0308-0161(96)00010-5
9.
Kolowrochi
,
K.
,
1998
, “
On Applications of Asymptotic Reliability Functions to the Reliability and Risk Evaluation of Pipelines
,”
Int. J. Pressure Vessels Piping
,
75
(
7
), pp.
545
558
.10.1016/S0308-0161(98)00047-7
10.
Pandey
,
D.
,
1998
, “
Probabilistic Models for Condition Assessment of Oil and Gas Pipelines
,”
NDT&E Int.
,
31
(
5
), pp.
349
358
.10.1016/S0963-8695(98)00003-6
11.
Sexsmith
,
R. G.
,
1999
, “
Probability-Based Safety Analysis-Value and Drawbacks
,”
Struct. Saf.
,
21
(
4
), pp.
303
310
.10.1016/S0167-4730(99)00026-0
12.
Melchers
,
R. E.
,
2005
, “
Statistical Characterization of Pitting Corrosion-1: Data Analysis
,”
Corrosion (NACE)
,
61
(
7
), pp.
655
664
.10.5006/1.3278201
13.
Melchers
,
R. E.
,
2005
, “
Probabilistic Modeling for Maximum Pit Depth
,”
Corrosion (NACE)
,
61
(
8
), pp.
766
777
.10.5006/1.3278211
14.
Melchers
,
R. E.
,
2005
, “
The Effect of Corrosion on the Structural Reliability of Steel Offshore Structures
,”
Corros. Sci.
,
47
(
10
), pp.
2391
2410
.10.1016/j.corsci.2005.04.004
15.
Mohd
,
M. H.
,
Kim
,
D. K.
,
Kim
,
D. W.
, and
Paik
,
J. K.
,
2013
, “
A Time-Variant Corrosion Wastage Model for Subsea Gas Pipelines
,”
Ships Offshore Struct.
,
9
(
2
), pp.
161
176
.10.1080/17445302.2013.770724
16.
Ahammed
,
M.
, and
Melchers
,
R. E.
,
1995
, “
Probabilistic Analysis of Pipelines Subjected to Pitting Corrosion Leak
,”
Eng. Struct.
,
17
(
2
), pp.
74
80
.10.1016/0141-0296(95)92637-N
17.
Ahammed
,
M.
, and
Melchers
,
R. E.
,
1996
, “
Reliability Estimation of Pressurised Pipelines Subject to Localised Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
69
(
3
), pp.
267
272
.10.1016/0308-0161(96)00009-9
18.
Ahammed
,
M.
, and
Melchers
,
R. E.
,
1997
, “
Probabilistic Analysis of Underground Pipelines Subject to Combined Stresses and Corrosion
,”
Eng. Struct.
,
19
(
12
), pp.
988
994
.10.1016/S0141-0296(97)00043-6
19.
Ahammed
,
M.
,
1998
, “
Probabilistic Estimation of Remaining Life of a Pipeline in the Presence of Active Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
75
(
4
), pp.
321
329
.10.1016/S0308-0161(98)00006-4
20.
Caleyo
,
F.
,
González
,
J. L.
, and
Hallen
,
J. M.
,
2002
, “
A Study on the Reliability Assessment Methodology for Pipelines With Active Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
77
86
.10.1016/S0308-0161(01)00124-7
21.
Elsayed
,
T.
,
Laheta
,
H.
, and
Yehya
,
A.
,
2011
, “
Reliability of Subsea Pipelines Against Lateral Instability
,”
Ships Offshore Struct.
,
7
(
2
), pp.
229
236
.10.1080/17445302.2010.532601
22.
Teixeira
,
A. P.
,
Guedes Soares
,
C.
,
Netto
,
T. A.
, and
Estefen
,
S. F.
,
2008
, “
Reliability of Pipelines With Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
85
(
4
), pp.
228
237
.10.1016/j.ijpvp.2007.09.002
23.
Netto
,
T. A.
,
Ferraz
,
U. S.
, and
Estefen
,
S. F.
,
2005
, “
The Effect of Corrosion Defects on the Burst Pressure of Pipelines
,”
J. Constr. Steel Res.
,
61
(
8
), pp.
1185
1204
.10.1016/j.jcsr.2005.02.010
24.
Chiodo
,
M. S. G.
, and
Ruggieri
,
C.
,
2009
, “
Failure Assessments of Corroded Pipelines With Axial Defects Using Stress-Based Criteria: Numerical Studies and Verification Analyses
,”
Int. J. Pressure Vessels Piping
,
86
(
2–3
), pp.
164
176
.10.1016/j.ijpvp.2008.11.011
25.
Gong
,
S. F.
,
Ni
,
X. Y.
,
Bao
,
S.
, and
Bai
,
Y.
,
2013
, “
Asymmetric Collapse of Offshore Pipelines Under External Pressure
,”
Ships Offshore Struct.
,
8
(
2
), pp.
176
188
.10.1080/17445302.2012.691273
26.
Yang
,
Z. R.
,
Li
,
H. S.
,
Guo
,
X. L.
, and
Li
,
H. Y.
,
2007
, “
Damage Assessment in Pipeline Structures Using Modal Parameter
,”
Ships Offshore Struct.
,
2
(
2
), pp.
191
197
.10.1080/17445300701430572
27.
Manes
,
A.
,
Porcaro
,
R.
,
Ilstad
,
H.
,
Levold
,
E.
,
Langseth
,
M.
, and
Børvik
,
T.
,
2012
, “
The Behaviour of an Offshore Steel Pipeline Material Subjected to Bending and Stretching
,”
Ships Offshore Struct.
,
7
(
4
), pp.
371
387
.10.1080/17445302.2011.606699
28.
Elosta
,
H.
,
Huang
,
S.
, and
Incecik
,
A.
,
2013
, “
Wave Loading Fatigue Reliability and Uncertainty Analyses for Geotechnical Pipeline Models
,”
Ships Offshore Struct.
,
9
(
4
), pp.
450
463
.10.1080/17445302.2013.834168
29.
Oh
,
C. K.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2007
, “
Ductile Failure Analysis of API X65 Pipes With Notch-Type Defects Using a Local Fracture Criterion
,”
Int. J. Pressure Vessels Piping
,
84
(
8
), pp.
512
525
.10.1016/j.ijpvp.2007.03.002
30.
ANSYS
,
2012
,
ANSYS User Manual (Release 14.0)
,
ANSYS, Inc.
,
Philadelphia, PA
.
31.
API
,
2007
,
Specification for Line Pipe
,
American Petroleum Institute
,
Washington, DC
.
32.
Cronin
,
D. S.
,
2000
, “
Assessment of Corrosion Defects in Pipelines
,” Ph.D. thesis, University of Waterloo, Waterloo, Canada.
33.
Pipeline Inspection Report
,
2009
, Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, Malaysia.
34.
Melchers
,
R. E.
,
2003
, “
Mathematical Modelling of the Diffusion Controlled Phase in Marine Immersion Corrosion of Mild Steel
,”
Corros. Sci.
,
45
(
5
), pp.
923
940
.10.1016/S0010-938X(02)00208-1
You do not currently have access to this content.